Key leaf traits indicative of photosynthetic plasticity in tropical tree species

Detalhes bibliográficos
Autor(a) principal: Anjos, Letícia dos
Data de Publicação: 2015
Outros Autores: Oliva, Marco A., Kuki, Kacilda N., Ventrella, Marília C., Galvão, Mayra F., Mielke, Marcelo S., Pinto, Luiz R. M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: https://doi.org/10.1007/s00468-014-1110-2
http://www.locus.ufv.br/handle/123456789/22161
Resumo: Information about light tolerance and photosynthetic plasticity of indigenous tropical tree species is still limited, particularly information of first years of plants’ development. In this study, we evaluated the adjustments in response to different light environments of 25 leaf traits most commonly assessed in studies on light acclimation of photosynthesis in current literature. This evaluation was used to investigate the photosynthetic plasticity on young plants of five tropical tree species belonged to different successional groups. All the species are commonly used in forest restoration programs in Brazil. Plants were grown for 6 months under different light conditions simulating environments that could exist due to variation in naturally occurring canopy openings of secondary tropical forests. The level of adjustment on leaf traits to environmental conditions was calculated via a plasticity index. The relation between leaf trait adjustments and species photosynthetic plasticity was investigated by multivariate Biplot analyses. We selected the seven most explicative leaf traits of the photosynthetic plasticity of the studied species in response to different light environments: dark respiration rate (R d), Rubisco carboxylation capacity (V cmax), total chlorophyll content (ChlT), contribution of spongy parenchyma (%SP), contribution of leaf collenchyma tissue (%C), chlorophyll parenchyma thickness (PP/SP) and specific leaf area (SLA). Based on the selected traits, we identified the traits most related to high plasticity (V cmax, PP/SP, %SP, %C and SLA) and low plasticity (V cmax, R d and ChlT) and grouped species into three different patterns of photosynthetic plasticity. Our plasticity grouping was not correlated with species successional classification, indicating the importance of including physiological features related to light tolerance in species successional classifications. This work provides complementing information to traditional species successional groupings and to our current ability to select species for enrichment planting on restoration efforts.
id UFV_cb07a58ad9a4ad91bdd529bb78c18f51
oai_identifier_str oai:locus.ufv.br:123456789/22161
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Anjos, Letícia dosOliva, Marco A.Kuki, Kacilda N.Ventrella, Marília C.Galvão, Mayra F.Mielke, Marcelo S.Pinto, Luiz R. M.2018-10-05T11:37:55Z2018-10-05T11:37:55Z2015-021432-2285https://doi.org/10.1007/s00468-014-1110-2http://www.locus.ufv.br/handle/123456789/22161Information about light tolerance and photosynthetic plasticity of indigenous tropical tree species is still limited, particularly information of first years of plants’ development. In this study, we evaluated the adjustments in response to different light environments of 25 leaf traits most commonly assessed in studies on light acclimation of photosynthesis in current literature. This evaluation was used to investigate the photosynthetic plasticity on young plants of five tropical tree species belonged to different successional groups. All the species are commonly used in forest restoration programs in Brazil. Plants were grown for 6 months under different light conditions simulating environments that could exist due to variation in naturally occurring canopy openings of secondary tropical forests. The level of adjustment on leaf traits to environmental conditions was calculated via a plasticity index. The relation between leaf trait adjustments and species photosynthetic plasticity was investigated by multivariate Biplot analyses. We selected the seven most explicative leaf traits of the photosynthetic plasticity of the studied species in response to different light environments: dark respiration rate (R d), Rubisco carboxylation capacity (V cmax), total chlorophyll content (ChlT), contribution of spongy parenchyma (%SP), contribution of leaf collenchyma tissue (%C), chlorophyll parenchyma thickness (PP/SP) and specific leaf area (SLA). Based on the selected traits, we identified the traits most related to high plasticity (V cmax, PP/SP, %SP, %C and SLA) and low plasticity (V cmax, R d and ChlT) and grouped species into three different patterns of photosynthetic plasticity. Our plasticity grouping was not correlated with species successional classification, indicating the importance of including physiological features related to light tolerance in species successional classifications. This work provides complementing information to traditional species successional groupings and to our current ability to select species for enrichment planting on restoration efforts.engTreesVolume 29, Issue 1, p. 247–258, February 2015Springer Berlin Heidelberginfo:eu-repo/semantics/openAccessForest restorationPhenotypic plasticityLight acclimationBiplot analysisKey leaf traits indicative of photosynthetic plasticity in tropical tree speciesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALartigo.pdfartigo.pdfTexto completoapplication/pdf1036031https://locus.ufv.br//bitstream/123456789/22161/1/artigo.pdf3b43cc83e26ad5b86753180e608b55d8MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/22161/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/221612021-06-23 08:31:20.003oai:locus.ufv.br:123456789/22161Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452021-06-23T11:31:20LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.en.fl_str_mv Key leaf traits indicative of photosynthetic plasticity in tropical tree species
title Key leaf traits indicative of photosynthetic plasticity in tropical tree species
spellingShingle Key leaf traits indicative of photosynthetic plasticity in tropical tree species
Anjos, Letícia dos
Forest restoration
Phenotypic plasticity
Light acclimation
Biplot analysis
title_short Key leaf traits indicative of photosynthetic plasticity in tropical tree species
title_full Key leaf traits indicative of photosynthetic plasticity in tropical tree species
title_fullStr Key leaf traits indicative of photosynthetic plasticity in tropical tree species
title_full_unstemmed Key leaf traits indicative of photosynthetic plasticity in tropical tree species
title_sort Key leaf traits indicative of photosynthetic plasticity in tropical tree species
author Anjos, Letícia dos
author_facet Anjos, Letícia dos
Oliva, Marco A.
Kuki, Kacilda N.
Ventrella, Marília C.
Galvão, Mayra F.
Mielke, Marcelo S.
Pinto, Luiz R. M.
author_role author
author2 Oliva, Marco A.
Kuki, Kacilda N.
Ventrella, Marília C.
Galvão, Mayra F.
Mielke, Marcelo S.
Pinto, Luiz R. M.
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Anjos, Letícia dos
Oliva, Marco A.
Kuki, Kacilda N.
Ventrella, Marília C.
Galvão, Mayra F.
Mielke, Marcelo S.
Pinto, Luiz R. M.
dc.subject.pt-BR.fl_str_mv Forest restoration
Phenotypic plasticity
Light acclimation
Biplot analysis
topic Forest restoration
Phenotypic plasticity
Light acclimation
Biplot analysis
description Information about light tolerance and photosynthetic plasticity of indigenous tropical tree species is still limited, particularly information of first years of plants’ development. In this study, we evaluated the adjustments in response to different light environments of 25 leaf traits most commonly assessed in studies on light acclimation of photosynthesis in current literature. This evaluation was used to investigate the photosynthetic plasticity on young plants of five tropical tree species belonged to different successional groups. All the species are commonly used in forest restoration programs in Brazil. Plants were grown for 6 months under different light conditions simulating environments that could exist due to variation in naturally occurring canopy openings of secondary tropical forests. The level of adjustment on leaf traits to environmental conditions was calculated via a plasticity index. The relation between leaf trait adjustments and species photosynthetic plasticity was investigated by multivariate Biplot analyses. We selected the seven most explicative leaf traits of the photosynthetic plasticity of the studied species in response to different light environments: dark respiration rate (R d), Rubisco carboxylation capacity (V cmax), total chlorophyll content (ChlT), contribution of spongy parenchyma (%SP), contribution of leaf collenchyma tissue (%C), chlorophyll parenchyma thickness (PP/SP) and specific leaf area (SLA). Based on the selected traits, we identified the traits most related to high plasticity (V cmax, PP/SP, %SP, %C and SLA) and low plasticity (V cmax, R d and ChlT) and grouped species into three different patterns of photosynthetic plasticity. Our plasticity grouping was not correlated with species successional classification, indicating the importance of including physiological features related to light tolerance in species successional classifications. This work provides complementing information to traditional species successional groupings and to our current ability to select species for enrichment planting on restoration efforts.
publishDate 2015
dc.date.issued.fl_str_mv 2015-02
dc.date.accessioned.fl_str_mv 2018-10-05T11:37:55Z
dc.date.available.fl_str_mv 2018-10-05T11:37:55Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://doi.org/10.1007/s00468-014-1110-2
http://www.locus.ufv.br/handle/123456789/22161
dc.identifier.issn.none.fl_str_mv 1432-2285
identifier_str_mv 1432-2285
url https://doi.org/10.1007/s00468-014-1110-2
http://www.locus.ufv.br/handle/123456789/22161
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartofseries.pt-BR.fl_str_mv Volume 29, Issue 1, p. 247–258, February 2015
dc.rights.driver.fl_str_mv Springer Berlin Heidelberg
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Springer Berlin Heidelberg
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Trees
publisher.none.fl_str_mv Trees
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/22161/1/artigo.pdf
https://locus.ufv.br//bitstream/123456789/22161/2/license.txt
bitstream.checksum.fl_str_mv 3b43cc83e26ad5b86753180e608b55d8
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1801212988825272320