Prediction of Girolando cattle weight by means of body measurements extracted from images

Detalhes bibliográficos
Autor(a) principal: Weber, Vanessa Aparecida de Moraes
Data de Publicação: 2020
Outros Autores: Weber, Fabricio de Lima, Gomes, Rodrigo da Costa, Oliveira Junior, Adair da Silva, Menezes, Geazy Vilharva, Abreu, Urbano Gomes Pinto de, Belete, Nícolas Alessandro de Souza, Pistori, Hemerson
Tipo de documento: Artigo
Idioma: eng
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: https://locus.ufv.br//handle/123456789/30680
https://doi.org/10.37496/rbz4920190110
Resumo: The objective with this study was to analyze the body measurements of Girolando cattle, as well as measurements extracted from their images, to generate a model to understand which measures further explain the cattle body weight. Therefore, the experiment physically measured 34 Girolando cattle (two males and 32 females), for the following traits: heart girth (HGP ), circumference of the abdomen, body length, occipito-ischial length, wither height, and hip height. In addition, images of the dorsum and the body lateral area of these animals allowed measurements of hip width (HWI ), body length, tail distance to the neck, dorsum area (DAI ), dorsum perimeter, wither height, hip height, body lateral area, perimeter of the lateral area, and rib height. The measurements extracted from the images were subjected to the stepwise regression method and regression-based machine learning algorithms. The HGp was the physical measure with stronger positive correlation with respect to body weight. In the stepwise method, the final model generated R² of 0.70 and RMSE of 42.52 kg and the equation: WEIGHT (kg) = 6.15421 * HWI (cm) + 0.01929 * DAI (cm2 ) + 70.8388. The linear regression and SVM algorithms obtained the best results, followed by discretization regression with random forests. The set of rules presented in this study can be recommended for estimating body weight in Girolando cattle, at a correlation coefficient of 0.71, by measurements of hip width and dorsum area, both extracted from cattle images
id UFV_cf09ca41893707efaa03c18d5891d5df
oai_identifier_str oai:locus.ufv.br:123456789/30680
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Weber, Vanessa Aparecida de MoraesWeber, Fabricio de LimaGomes, Rodrigo da CostaOliveira Junior, Adair da SilvaMenezes, Geazy VilharvaAbreu, Urbano Gomes Pinto deBelete, Nícolas Alessandro de SouzaPistori, Hemerson2023-04-10T17:28:11Z2023-04-10T17:28:11Z2020-03-16Weber, V. A. M.; Weber, F. L.; Gomes, R. C.; Oliveira Junior, A. S.; Menezes, G. V.; Abreu, U. G. P.; Belete, N. A. S. and Pistori, H. 2020. Prediction of Girolando cattle weight by means of body measurements extracted from images. Revista Brasileira de Zootecnia 49:e201901101806-9290https://locus.ufv.br//handle/123456789/30680https://doi.org/10.37496/rbz4920190110The objective with this study was to analyze the body measurements of Girolando cattle, as well as measurements extracted from their images, to generate a model to understand which measures further explain the cattle body weight. Therefore, the experiment physically measured 34 Girolando cattle (two males and 32 females), for the following traits: heart girth (HGP ), circumference of the abdomen, body length, occipito-ischial length, wither height, and hip height. In addition, images of the dorsum and the body lateral area of these animals allowed measurements of hip width (HWI ), body length, tail distance to the neck, dorsum area (DAI ), dorsum perimeter, wither height, hip height, body lateral area, perimeter of the lateral area, and rib height. The measurements extracted from the images were subjected to the stepwise regression method and regression-based machine learning algorithms. The HGp was the physical measure with stronger positive correlation with respect to body weight. In the stepwise method, the final model generated R² of 0.70 and RMSE of 42.52 kg and the equation: WEIGHT (kg) = 6.15421 * HWI (cm) + 0.01929 * DAI (cm2 ) + 70.8388. The linear regression and SVM algorithms obtained the best results, followed by discretization regression with random forests. The set of rules presented in this study can be recommended for estimating body weight in Girolando cattle, at a correlation coefficient of 0.71, by measurements of hip width and dorsum area, both extracted from cattle imagesengBrazilian Journal of Animal ScienceR. Bras. Zootec., 49:e20190110, 2020Creative Commons Attribution Licenseinfo:eu-repo/semantics/openAccesscattlecomputer visionlivestock precisionmachine learningmass estimationPrediction of Girolando cattle weight by means of body measurements extracted from imagesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlereponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINAL1806-9290-rbz-49-e20190110.pdf1806-9290-rbz-49-e20190110.pdfartigoapplication/pdf3244557https://locus.ufv.br//bitstream/123456789/30680/1/1806-9290-rbz-49-e20190110.pdf6d176c6b848c20787f5200596e32c358MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/30680/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/306802023-04-10 14:28:11.705oai:locus.ufv.br:123456789/30680Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452023-04-10T17:28:11LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.en.fl_str_mv Prediction of Girolando cattle weight by means of body measurements extracted from images
title Prediction of Girolando cattle weight by means of body measurements extracted from images
spellingShingle Prediction of Girolando cattle weight by means of body measurements extracted from images
Weber, Vanessa Aparecida de Moraes
cattle
computer vision
livestock precision
machine learning
mass estimation
title_short Prediction of Girolando cattle weight by means of body measurements extracted from images
title_full Prediction of Girolando cattle weight by means of body measurements extracted from images
title_fullStr Prediction of Girolando cattle weight by means of body measurements extracted from images
title_full_unstemmed Prediction of Girolando cattle weight by means of body measurements extracted from images
title_sort Prediction of Girolando cattle weight by means of body measurements extracted from images
author Weber, Vanessa Aparecida de Moraes
author_facet Weber, Vanessa Aparecida de Moraes
Weber, Fabricio de Lima
Gomes, Rodrigo da Costa
Oliveira Junior, Adair da Silva
Menezes, Geazy Vilharva
Abreu, Urbano Gomes Pinto de
Belete, Nícolas Alessandro de Souza
Pistori, Hemerson
author_role author
author2 Weber, Fabricio de Lima
Gomes, Rodrigo da Costa
Oliveira Junior, Adair da Silva
Menezes, Geazy Vilharva
Abreu, Urbano Gomes Pinto de
Belete, Nícolas Alessandro de Souza
Pistori, Hemerson
author2_role author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Weber, Vanessa Aparecida de Moraes
Weber, Fabricio de Lima
Gomes, Rodrigo da Costa
Oliveira Junior, Adair da Silva
Menezes, Geazy Vilharva
Abreu, Urbano Gomes Pinto de
Belete, Nícolas Alessandro de Souza
Pistori, Hemerson
dc.subject.eng.fl_str_mv cattle
computer vision
livestock precision
machine learning
mass estimation
topic cattle
computer vision
livestock precision
machine learning
mass estimation
description The objective with this study was to analyze the body measurements of Girolando cattle, as well as measurements extracted from their images, to generate a model to understand which measures further explain the cattle body weight. Therefore, the experiment physically measured 34 Girolando cattle (two males and 32 females), for the following traits: heart girth (HGP ), circumference of the abdomen, body length, occipito-ischial length, wither height, and hip height. In addition, images of the dorsum and the body lateral area of these animals allowed measurements of hip width (HWI ), body length, tail distance to the neck, dorsum area (DAI ), dorsum perimeter, wither height, hip height, body lateral area, perimeter of the lateral area, and rib height. The measurements extracted from the images were subjected to the stepwise regression method and regression-based machine learning algorithms. The HGp was the physical measure with stronger positive correlation with respect to body weight. In the stepwise method, the final model generated R² of 0.70 and RMSE of 42.52 kg and the equation: WEIGHT (kg) = 6.15421 * HWI (cm) + 0.01929 * DAI (cm2 ) + 70.8388. The linear regression and SVM algorithms obtained the best results, followed by discretization regression with random forests. The set of rules presented in this study can be recommended for estimating body weight in Girolando cattle, at a correlation coefficient of 0.71, by measurements of hip width and dorsum area, both extracted from cattle images
publishDate 2020
dc.date.issued.fl_str_mv 2020-03-16
dc.date.accessioned.fl_str_mv 2023-04-10T17:28:11Z
dc.date.available.fl_str_mv 2023-04-10T17:28:11Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.citation.fl_str_mv Weber, V. A. M.; Weber, F. L.; Gomes, R. C.; Oliveira Junior, A. S.; Menezes, G. V.; Abreu, U. G. P.; Belete, N. A. S. and Pistori, H. 2020. Prediction of Girolando cattle weight by means of body measurements extracted from images. Revista Brasileira de Zootecnia 49:e20190110
dc.identifier.uri.fl_str_mv https://locus.ufv.br//handle/123456789/30680
dc.identifier.issn.none.fl_str_mv 1806-9290
dc.identifier.doi.pt-BR.fl_str_mv https://doi.org/10.37496/rbz4920190110
identifier_str_mv Weber, V. A. M.; Weber, F. L.; Gomes, R. C.; Oliveira Junior, A. S.; Menezes, G. V.; Abreu, U. G. P.; Belete, N. A. S. and Pistori, H. 2020. Prediction of Girolando cattle weight by means of body measurements extracted from images. Revista Brasileira de Zootecnia 49:e20190110
1806-9290
url https://locus.ufv.br//handle/123456789/30680
https://doi.org/10.37496/rbz4920190110
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartofseries.pt-BR.fl_str_mv R. Bras. Zootec., 49:e20190110, 2020
dc.rights.driver.fl_str_mv Creative Commons Attribution License
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Creative Commons Attribution License
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Brazilian Journal of Animal Science
publisher.none.fl_str_mv Brazilian Journal of Animal Science
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/30680/1/1806-9290-rbz-49-e20190110.pdf
https://locus.ufv.br//bitstream/123456789/30680/2/license.txt
bitstream.checksum.fl_str_mv 6d176c6b848c20787f5200596e32c358
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1801212966821953536