A crop model-based approach for sunflower yields

Detalhes bibliográficos
Autor(a) principal: Leite, João Guilherme Dal Belo
Data de Publicação: 2014
Outros Autores: Silva, João Vasco, Justino, Flávio Barbosa, Ittersum, Martin K. van
Tipo de documento: Artigo
Idioma: eng
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: http://dx.doi.org/10.1590/0103-9016-2013-0356
http://www.locus.ufv.br/handle/123456789/17017
Resumo: Pushed by the Brazilian biodiesel policy, sunflower (Helianthus annuus L.) production is becoming increasingly regarded as an option to boost farmers' income, particularly under semi-arid conditions. Biodiesel related opportunities increase the demand for decision-making information at different levels, which could be met by simulation models. This study aimed to evaluate the performance of the crop model OILCROP-SUN to simulate sunflower development and growth under Brazilian conditions and to explore sunflower water- and nitrogen-limited, water-limited and potential yield and yield variability over an array of sowing dates in the northern region of the state of Minas Gerais, Brazil. For model calibration, an experiment was conducted in which two sunflower genotypes (H358 and E122) were cultivated in a clayey soil. Growth components (leaf area index, above ground biomass, grain yield) and development stages (crop phenology) were measured. A database composed of 27 sunflower experiments from five Brazilian regions was used for model evaluation. The spatial yield distribution of sunflower was mapped using ordinary kriging in ArcGIS. The model simulated sunflower grain productivity satisfactorily (Root Mean Square Error ≈ 13 %). Simulated yields were relatively high (1,750 to 4,250 kg ha-1) and the sowing window was fairly wide (Oct to Feb) for northwestern locations, where sunflower could be cultivated as a second crop (double cropping) at the end of the rainy season. The hybrid H358 had higher yields for all simulated sowing dates, growth conditions and selected locations.
id UFV_d65e3bfb5f69af68d6812514d2f29267
oai_identifier_str oai:locus.ufv.br:123456789/17017
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Leite, João Guilherme Dal BeloSilva, João VascoJustino, Flávio BarbosaIttersum, Martin K. van2018-01-31T09:26:04Z2018-01-31T09:26:04Z2014-03-080103-9016http://dx.doi.org/10.1590/0103-9016-2013-0356http://www.locus.ufv.br/handle/123456789/17017Pushed by the Brazilian biodiesel policy, sunflower (Helianthus annuus L.) production is becoming increasingly regarded as an option to boost farmers' income, particularly under semi-arid conditions. Biodiesel related opportunities increase the demand for decision-making information at different levels, which could be met by simulation models. This study aimed to evaluate the performance of the crop model OILCROP-SUN to simulate sunflower development and growth under Brazilian conditions and to explore sunflower water- and nitrogen-limited, water-limited and potential yield and yield variability over an array of sowing dates in the northern region of the state of Minas Gerais, Brazil. For model calibration, an experiment was conducted in which two sunflower genotypes (H358 and E122) were cultivated in a clayey soil. Growth components (leaf area index, above ground biomass, grain yield) and development stages (crop phenology) were measured. A database composed of 27 sunflower experiments from five Brazilian regions was used for model evaluation. The spatial yield distribution of sunflower was mapped using ordinary kriging in ArcGIS. The model simulated sunflower grain productivity satisfactorily (Root Mean Square Error ≈ 13 %). Simulated yields were relatively high (1,750 to 4,250 kg ha-1) and the sowing window was fairly wide (Oct to Feb) for northwestern locations, where sunflower could be cultivated as a second crop (double cropping) at the end of the rainy season. The hybrid H358 had higher yields for all simulated sowing dates, growth conditions and selected locations.engScientia Agricolav. 71, n. 5, p. 345-355, Sept./Oct. 2014Production systemsFamily farmsBiodiesel cropsClimate classificationA crop model-based approach for sunflower yieldsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALartigo.pdfartigo.pdftexto completoapplication/pdf1014438https://locus.ufv.br//bitstream/123456789/17017/1/artigo.pdf39d89920a0883f768cfa7cf9715c7a21MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/17017/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILartigo.pdf.jpgartigo.pdf.jpgIM Thumbnailimage/jpeg4341https://locus.ufv.br//bitstream/123456789/17017/3/artigo.pdf.jpgb46772296dd8447a5183e9d57d5ec367MD53123456789/170172018-01-31 22:00:40.826oai:locus.ufv.br:123456789/17017Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452018-02-01T01:00:40LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.en.fl_str_mv A crop model-based approach for sunflower yields
title A crop model-based approach for sunflower yields
spellingShingle A crop model-based approach for sunflower yields
Leite, João Guilherme Dal Belo
Production systems
Family farms
Biodiesel crops
Climate classification
title_short A crop model-based approach for sunflower yields
title_full A crop model-based approach for sunflower yields
title_fullStr A crop model-based approach for sunflower yields
title_full_unstemmed A crop model-based approach for sunflower yields
title_sort A crop model-based approach for sunflower yields
author Leite, João Guilherme Dal Belo
author_facet Leite, João Guilherme Dal Belo
Silva, João Vasco
Justino, Flávio Barbosa
Ittersum, Martin K. van
author_role author
author2 Silva, João Vasco
Justino, Flávio Barbosa
Ittersum, Martin K. van
author2_role author
author
author
dc.contributor.author.fl_str_mv Leite, João Guilherme Dal Belo
Silva, João Vasco
Justino, Flávio Barbosa
Ittersum, Martin K. van
dc.subject.pt-BR.fl_str_mv Production systems
Family farms
Biodiesel crops
Climate classification
topic Production systems
Family farms
Biodiesel crops
Climate classification
description Pushed by the Brazilian biodiesel policy, sunflower (Helianthus annuus L.) production is becoming increasingly regarded as an option to boost farmers' income, particularly under semi-arid conditions. Biodiesel related opportunities increase the demand for decision-making information at different levels, which could be met by simulation models. This study aimed to evaluate the performance of the crop model OILCROP-SUN to simulate sunflower development and growth under Brazilian conditions and to explore sunflower water- and nitrogen-limited, water-limited and potential yield and yield variability over an array of sowing dates in the northern region of the state of Minas Gerais, Brazil. For model calibration, an experiment was conducted in which two sunflower genotypes (H358 and E122) were cultivated in a clayey soil. Growth components (leaf area index, above ground biomass, grain yield) and development stages (crop phenology) were measured. A database composed of 27 sunflower experiments from five Brazilian regions was used for model evaluation. The spatial yield distribution of sunflower was mapped using ordinary kriging in ArcGIS. The model simulated sunflower grain productivity satisfactorily (Root Mean Square Error ≈ 13 %). Simulated yields were relatively high (1,750 to 4,250 kg ha-1) and the sowing window was fairly wide (Oct to Feb) for northwestern locations, where sunflower could be cultivated as a second crop (double cropping) at the end of the rainy season. The hybrid H358 had higher yields for all simulated sowing dates, growth conditions and selected locations.
publishDate 2014
dc.date.issued.fl_str_mv 2014-03-08
dc.date.accessioned.fl_str_mv 2018-01-31T09:26:04Z
dc.date.available.fl_str_mv 2018-01-31T09:26:04Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1590/0103-9016-2013-0356
http://www.locus.ufv.br/handle/123456789/17017
dc.identifier.issn.none.fl_str_mv 0103-9016
identifier_str_mv 0103-9016
url http://dx.doi.org/10.1590/0103-9016-2013-0356
http://www.locus.ufv.br/handle/123456789/17017
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartofseries.pt-BR.fl_str_mv v. 71, n. 5, p. 345-355, Sept./Oct. 2014
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Scientia Agricola
publisher.none.fl_str_mv Scientia Agricola
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/17017/1/artigo.pdf
https://locus.ufv.br//bitstream/123456789/17017/2/license.txt
https://locus.ufv.br//bitstream/123456789/17017/3/artigo.pdf.jpg
bitstream.checksum.fl_str_mv 39d89920a0883f768cfa7cf9715c7a21
8a4605be74aa9ea9d79846c1fba20a33
b46772296dd8447a5183e9d57d5ec367
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1801212865616543744