Controle e avaliação de um conjunto gaseificador-combustor de fluxo concorrente, utilizando como combustível a biomassa de lenha de eucalipto
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | LOCUS Repositório Institucional da UFV |
Texto Completo: | http://locus.ufv.br/handle/123456789/3539 |
Resumo: | Recently, concern has grown considering environmental issues associated with the preservation of natural resources with the intention of improving the present and future quality of life. Biomass gasification shows to be a sustainable technology for power generation with low greenhouse gas emissions. One of the problems by using the gasifier for air heating purposes in poultry facilities is the waste of energy during the day, since the equipment does not have control of the thermal power generated. During this period, the temperature difference between the air outside and the birds inside the building is lower when compared with the nocturnal period. Another way to control the temperature is the shutdown of the system, which requires the constant attention of the operator. Thus, there is a potential for energy savings if the thermal power could be controlled according to the demand, which can be represented by the temperature gradient. The purpose of this study was to evaluate the control of a set combustor-gasifier with downdraught co-current flow, through the control of speed of the fan engine and also controlling the contributions of primary and secondary air in the combustor. The experiment was carried out in the Energy and Preprocessing Areas of the Department of Agricultural Engineering, at the Federal University of Viçosa, Viçosa, Minas Gerais State. The air heating system was composed of a biomass gasifier with co-current air flow connected to a combustor for burning the gas produced. At the combustor exit was a centrifugal fan with capacity for 20 m3.mim-1 552 W, 220 V threephase motor. The exhaustion and environmental air temperatures were measures by thermocouples K (Cromel + Alumel). Eucalyptus wood biomass, with an average diameter 6.0 ± 2.0 cm average length 4.0 ± 2.0 cm was used as fuel to the gasifier. The areas used for the primary air contributions to the combustor were 0 and 112 cm², and for the secondary air contribution to the combustor were: 0, 180 and 360 cm². The frequencies chosen and applied by the frequency inverter to the motor were from 10 to 60 Hz, with steps of 5 Hz, obtaining a range of average actual power from the motor from 93 to 326 W. The difference of temperature and average actual power from the motor was measured with the combustor air inlets closed were respectively 127.7 °C and 233 W. When the combustor air inlet area was 472 cm2, 10 °C and 97 W were found. After evaluating the results, it could be concluded that: the control of exhaustion air temperature can be done by controlling the air flow to the combustor or changing the speed of the fan motor. The variation of the input area of air in the combustor implicates in a variation in the temperature of the exhaustion air. However, controlling the speed of the fan motor provides a change in exhaustion air temperature and a decrease in electric power consumption. The operation of the gasifiercombustor using a frequency inverter combined with the combustor openings of air eases the consumption production of thermal power. |
id |
UFV_d66d6d9de1707f279fe8cef3403780f4 |
---|---|
oai_identifier_str |
oai:locus.ufv.br:123456789/3539 |
network_acronym_str |
UFV |
network_name_str |
LOCUS Repositório Institucional da UFV |
repository_id_str |
2145 |
spelling |
Santos, William Rosário doshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4243802A8Oliveira Filho, Dellyhttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4783321Z9Martins, Márcio Arêdeshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4798288T8Silva, Jadir Nogueira dahttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4783346P3Silva, Juarez de Souza ehttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4783545Y9Costa, José Márciohttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4797905J5Scholz, Volkhard2015-03-26T13:23:23Z2009-09-042015-03-26T13:23:23Z2008-11-26SANTOS, William Rosário dos. Control and evaluation of a set gasifier-combustor with co-current flow using eucalyptus wood as a fuel. 2008. 85 f. Dissertação (Mestrado em Construções rurais e ambiência; Energia na agricultura; Mecanização agrícola; Processamento de produ) - Universidade Federal de Viçosa, Viçosa, 2008.http://locus.ufv.br/handle/123456789/3539Recently, concern has grown considering environmental issues associated with the preservation of natural resources with the intention of improving the present and future quality of life. Biomass gasification shows to be a sustainable technology for power generation with low greenhouse gas emissions. One of the problems by using the gasifier for air heating purposes in poultry facilities is the waste of energy during the day, since the equipment does not have control of the thermal power generated. During this period, the temperature difference between the air outside and the birds inside the building is lower when compared with the nocturnal period. Another way to control the temperature is the shutdown of the system, which requires the constant attention of the operator. Thus, there is a potential for energy savings if the thermal power could be controlled according to the demand, which can be represented by the temperature gradient. The purpose of this study was to evaluate the control of a set combustor-gasifier with downdraught co-current flow, through the control of speed of the fan engine and also controlling the contributions of primary and secondary air in the combustor. The experiment was carried out in the Energy and Preprocessing Areas of the Department of Agricultural Engineering, at the Federal University of Viçosa, Viçosa, Minas Gerais State. The air heating system was composed of a biomass gasifier with co-current air flow connected to a combustor for burning the gas produced. At the combustor exit was a centrifugal fan with capacity for 20 m3.mim-1 552 W, 220 V threephase motor. The exhaustion and environmental air temperatures were measures by thermocouples K (Cromel + Alumel). Eucalyptus wood biomass, with an average diameter 6.0 ± 2.0 cm average length 4.0 ± 2.0 cm was used as fuel to the gasifier. The areas used for the primary air contributions to the combustor were 0 and 112 cm², and for the secondary air contribution to the combustor were: 0, 180 and 360 cm². The frequencies chosen and applied by the frequency inverter to the motor were from 10 to 60 Hz, with steps of 5 Hz, obtaining a range of average actual power from the motor from 93 to 326 W. The difference of temperature and average actual power from the motor was measured with the combustor air inlets closed were respectively 127.7 °C and 233 W. When the combustor air inlet area was 472 cm2, 10 °C and 97 W were found. After evaluating the results, it could be concluded that: the control of exhaustion air temperature can be done by controlling the air flow to the combustor or changing the speed of the fan motor. The variation of the input area of air in the combustor implicates in a variation in the temperature of the exhaustion air. However, controlling the speed of the fan motor provides a change in exhaustion air temperature and a decrease in electric power consumption. The operation of the gasifiercombustor using a frequency inverter combined with the combustor openings of air eases the consumption production of thermal power.Nos dias atuais, há uma preocupação com questões ecológicas associadas à preservação dos recursos naturais visando à qualidade de vida atual e futura. Nesse contexto, a gaseificação de biomassa é uma tecnologia sustentável para a geração de energia, por apresentar baixa emissão de gases poluentes. Um dos problemas do uso do gaseificador para o aquecimento do ar em aviários é o desperdício de energia no período diurno, tendo em vista que o equipamento não dispõe de sistema de controle de potência térmica gerada. Nesse período, a diferença de temperatura entre o ar ambiente e a necessária para as aves no interior dos galpões é menor quando comparada com o período noturno. Outra forma de controle da temperatura é o desligamento do sistema, o que acarreta uma constante atenção por parte do operador. Desse modo, há um potencial de economia de energia, caso venha a ser controlada a potência térmica em função da demanda, que pode ser representada pelo gradiente de temperatura. Objetivou se com este trabalho avaliar o controle de um conjunto gaseificador-combustor de fluxo concorrente, por meio do controle da velocidade do motor do ventilador e das entradas de ar primário e secundário no combustor. O experimento foi realizado nos laboratórios da Área Pré- processamento de Produtos Agrícolas e de Energia do Departamento de Engenharia Agrícola da Universidade Federal de Viçosa, Viçosa, Minas Gerais. O sistema de aquecimento de ar foi constituído por um gaseificador de biomassa de fluxo concorrente conectado a um combustor, onde foi queimado o gás produzido. Na saída do combustor foi colocado um ventilador centrífugo, com capacidade para 20 m3 mim-1 acionado por um motor de 552 W, 220 V trifásico. As medidas de temperaturas do ar exaustão e ambiente foram realizadas por meio de termopares blindados do tipo K, de Cromel+ Alumel. A biomassa utilizada foi lenha de eucalipto, tendo um diâmetro médio de 6,0 ± 2,0 cm e comprimento médio de 4,0 ± 2,0 cm. As áreas mínimas e máximas utilizadas para as entradas de ar primário no combustor foram de 0 e 112 cm2, e secundário de 0, 180 e 360 cm2. O intervalo de freqüências escolhidas e fornecidas pelo inversor ao motor foram de 10 a 60 Hz, com variação de 5 Hz, com isso foi obtido um intervalo de potência ativa média para o motor de 93 a 326 W. A diferença de temperatura e potência ativa média do motor foi medida para as entradas de ar no combustor fechadas, foi respectivamente de 127,7 °C e 233 W, e para a área de entradas de ar no combustor igual 472 cm2, foi respectivamente de: 10 °C e 97 W. Após analisar os resultados conclui-se que: O controle de temperatura do ar de exaustão pode ser efetuado pelo fluxo de ar que passa pelas entradas de ar no combustor, por meio do controle da área da entrada de ar no combustor ou pela variação da velocidade do motor do ventilador. A variação da área de entrada de ar no combustor implica em uma variação na temperatura do ar de exaustão. Entretanto, o controle da velocidade do motor proporciona uma variação da temperatura do ar de exaustão, e uma diminuição no consumo de energia elétrica. A operação do gaseificador- combustor utilizando o inversor de freqüência combinado com as aberturas de entrada de ar no combustor flexibiliza a consumo de potência térmica.Conselho Nacional de Desenvolvimento Científico e Tecnológicoapplication/pdfporUniversidade Federal de ViçosaMestrado em Engenharia AgrícolaUFVBRConstruções rurais e ambiência; Energia na agricultura; Mecanização agrícola; Processamento de produControleGaseificadorBiomassaControlGasifierBiomassCNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA::ENERGIZACAO RURALControle e avaliação de um conjunto gaseificador-combustor de fluxo concorrente, utilizando como combustível a biomassa de lenha de eucaliptoControl and evaluation of a set gasifier-combustor with co-current flow using eucalyptus wood as a fuelinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALtexto completo.pdfapplication/pdf650312https://locus.ufv.br//bitstream/123456789/3539/1/texto%20completo.pdf96eae32c74751e3b2db6bb29ca7b81b6MD51TEXTtexto completo.pdf.txttexto completo.pdf.txtExtracted texttext/plain99044https://locus.ufv.br//bitstream/123456789/3539/2/texto%20completo.pdf.txtbf4991a580fc8083b4e0c84c4cdbd353MD52THUMBNAILtexto completo.pdf.jpgtexto completo.pdf.jpgIM Thumbnailimage/jpeg3562https://locus.ufv.br//bitstream/123456789/3539/3/texto%20completo.pdf.jpg109ab75c95ee367f4251819638d30116MD53123456789/35392016-04-08 23:20:34.738oai:locus.ufv.br:123456789/3539Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452016-04-09T02:20:34LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false |
dc.title.por.fl_str_mv |
Controle e avaliação de um conjunto gaseificador-combustor de fluxo concorrente, utilizando como combustível a biomassa de lenha de eucalipto |
dc.title.alternative.eng.fl_str_mv |
Control and evaluation of a set gasifier-combustor with co-current flow using eucalyptus wood as a fuel |
title |
Controle e avaliação de um conjunto gaseificador-combustor de fluxo concorrente, utilizando como combustível a biomassa de lenha de eucalipto |
spellingShingle |
Controle e avaliação de um conjunto gaseificador-combustor de fluxo concorrente, utilizando como combustível a biomassa de lenha de eucalipto Santos, William Rosário dos Controle Gaseificador Biomassa Control Gasifier Biomass CNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA::ENERGIZACAO RURAL |
title_short |
Controle e avaliação de um conjunto gaseificador-combustor de fluxo concorrente, utilizando como combustível a biomassa de lenha de eucalipto |
title_full |
Controle e avaliação de um conjunto gaseificador-combustor de fluxo concorrente, utilizando como combustível a biomassa de lenha de eucalipto |
title_fullStr |
Controle e avaliação de um conjunto gaseificador-combustor de fluxo concorrente, utilizando como combustível a biomassa de lenha de eucalipto |
title_full_unstemmed |
Controle e avaliação de um conjunto gaseificador-combustor de fluxo concorrente, utilizando como combustível a biomassa de lenha de eucalipto |
title_sort |
Controle e avaliação de um conjunto gaseificador-combustor de fluxo concorrente, utilizando como combustível a biomassa de lenha de eucalipto |
author |
Santos, William Rosário dos |
author_facet |
Santos, William Rosário dos |
author_role |
author |
dc.contributor.authorLattes.por.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4243802A8 |
dc.contributor.author.fl_str_mv |
Santos, William Rosário dos |
dc.contributor.advisor-co1.fl_str_mv |
Oliveira Filho, Delly |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4783321Z9 |
dc.contributor.advisor-co2.fl_str_mv |
Martins, Márcio Arêdes |
dc.contributor.advisor-co2Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4798288T8 |
dc.contributor.advisor1.fl_str_mv |
Silva, Jadir Nogueira da |
dc.contributor.advisor1Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4783346P3 |
dc.contributor.referee1.fl_str_mv |
Silva, Juarez de Souza e |
dc.contributor.referee1Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4783545Y9 |
dc.contributor.referee2.fl_str_mv |
Costa, José Márcio |
dc.contributor.referee2Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4797905J5 |
dc.contributor.referee3.fl_str_mv |
Scholz, Volkhard |
contributor_str_mv |
Oliveira Filho, Delly Martins, Márcio Arêdes Silva, Jadir Nogueira da Silva, Juarez de Souza e Costa, José Márcio Scholz, Volkhard |
dc.subject.por.fl_str_mv |
Controle Gaseificador Biomassa |
topic |
Controle Gaseificador Biomassa Control Gasifier Biomass CNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA::ENERGIZACAO RURAL |
dc.subject.eng.fl_str_mv |
Control Gasifier Biomass |
dc.subject.cnpq.fl_str_mv |
CNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA::ENERGIZACAO RURAL |
description |
Recently, concern has grown considering environmental issues associated with the preservation of natural resources with the intention of improving the present and future quality of life. Biomass gasification shows to be a sustainable technology for power generation with low greenhouse gas emissions. One of the problems by using the gasifier for air heating purposes in poultry facilities is the waste of energy during the day, since the equipment does not have control of the thermal power generated. During this period, the temperature difference between the air outside and the birds inside the building is lower when compared with the nocturnal period. Another way to control the temperature is the shutdown of the system, which requires the constant attention of the operator. Thus, there is a potential for energy savings if the thermal power could be controlled according to the demand, which can be represented by the temperature gradient. The purpose of this study was to evaluate the control of a set combustor-gasifier with downdraught co-current flow, through the control of speed of the fan engine and also controlling the contributions of primary and secondary air in the combustor. The experiment was carried out in the Energy and Preprocessing Areas of the Department of Agricultural Engineering, at the Federal University of Viçosa, Viçosa, Minas Gerais State. The air heating system was composed of a biomass gasifier with co-current air flow connected to a combustor for burning the gas produced. At the combustor exit was a centrifugal fan with capacity for 20 m3.mim-1 552 W, 220 V threephase motor. The exhaustion and environmental air temperatures were measures by thermocouples K (Cromel + Alumel). Eucalyptus wood biomass, with an average diameter 6.0 ± 2.0 cm average length 4.0 ± 2.0 cm was used as fuel to the gasifier. The areas used for the primary air contributions to the combustor were 0 and 112 cm², and for the secondary air contribution to the combustor were: 0, 180 and 360 cm². The frequencies chosen and applied by the frequency inverter to the motor were from 10 to 60 Hz, with steps of 5 Hz, obtaining a range of average actual power from the motor from 93 to 326 W. The difference of temperature and average actual power from the motor was measured with the combustor air inlets closed were respectively 127.7 °C and 233 W. When the combustor air inlet area was 472 cm2, 10 °C and 97 W were found. After evaluating the results, it could be concluded that: the control of exhaustion air temperature can be done by controlling the air flow to the combustor or changing the speed of the fan motor. The variation of the input area of air in the combustor implicates in a variation in the temperature of the exhaustion air. However, controlling the speed of the fan motor provides a change in exhaustion air temperature and a decrease in electric power consumption. The operation of the gasifiercombustor using a frequency inverter combined with the combustor openings of air eases the consumption production of thermal power. |
publishDate |
2008 |
dc.date.issued.fl_str_mv |
2008-11-26 |
dc.date.available.fl_str_mv |
2009-09-04 2015-03-26T13:23:23Z |
dc.date.accessioned.fl_str_mv |
2015-03-26T13:23:23Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
SANTOS, William Rosário dos. Control and evaluation of a set gasifier-combustor with co-current flow using eucalyptus wood as a fuel. 2008. 85 f. Dissertação (Mestrado em Construções rurais e ambiência; Energia na agricultura; Mecanização agrícola; Processamento de produ) - Universidade Federal de Viçosa, Viçosa, 2008. |
dc.identifier.uri.fl_str_mv |
http://locus.ufv.br/handle/123456789/3539 |
identifier_str_mv |
SANTOS, William Rosário dos. Control and evaluation of a set gasifier-combustor with co-current flow using eucalyptus wood as a fuel. 2008. 85 f. Dissertação (Mestrado em Construções rurais e ambiência; Energia na agricultura; Mecanização agrícola; Processamento de produ) - Universidade Federal de Viçosa, Viçosa, 2008. |
url |
http://locus.ufv.br/handle/123456789/3539 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Viçosa |
dc.publisher.program.fl_str_mv |
Mestrado em Engenharia Agrícola |
dc.publisher.initials.fl_str_mv |
UFV |
dc.publisher.country.fl_str_mv |
BR |
dc.publisher.department.fl_str_mv |
Construções rurais e ambiência; Energia na agricultura; Mecanização agrícola; Processamento de produ |
publisher.none.fl_str_mv |
Universidade Federal de Viçosa |
dc.source.none.fl_str_mv |
reponame:LOCUS Repositório Institucional da UFV instname:Universidade Federal de Viçosa (UFV) instacron:UFV |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
UFV |
institution |
UFV |
reponame_str |
LOCUS Repositório Institucional da UFV |
collection |
LOCUS Repositório Institucional da UFV |
bitstream.url.fl_str_mv |
https://locus.ufv.br//bitstream/123456789/3539/1/texto%20completo.pdf https://locus.ufv.br//bitstream/123456789/3539/2/texto%20completo.pdf.txt https://locus.ufv.br//bitstream/123456789/3539/3/texto%20completo.pdf.jpg |
bitstream.checksum.fl_str_mv |
96eae32c74751e3b2db6bb29ca7b81b6 bf4991a580fc8083b4e0c84c4cdbd353 109ab75c95ee367f4251819638d30116 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
fabiojreis@ufv.br |
_version_ |
1801213047883169792 |