Análises biométricas e mapeamento de QTLS para tolerância à seca em milho
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | LOCUS Repositório Institucional da UFV |
Texto Completo: | http://locus.ufv.br/handle/123456789/237 |
Resumo: | One of the major goals of crop improvement is the increase in agricultural productivity associated with the improvement for the consumption in human or animal feeding. These goals can be achieved through improvements in environmental conditions or by improving the genetic potential of populations. Recently, much has been discussed about global warming, climate change on the agricultural scenario in the face of these changes and the contribution of genetic improvement in mitigating the problems arising from global warming. Drought is a major environmental stresses that limit plant growth and consequently crop yields. Plants respond to water deficit and adapt to drought conditions through a variety of physiological and biochemical changes, including phenological changes. However, the losses in grain production in maize are severe when the crop is under water stress condition, which is one of the main limiting factors. Maize is particularly sensitive to water stress during the reproductive phase. National and international maize breeding programs, have considered the simultaneous study of (i) biometric analysis of traits related to drought and their correlation with grain yield and (ii) the use of molecular markers technology for detection of QTLs, which are the identification of genomic regions responsible for inducing tolerance to drought. Both studies make it possible for geneticists understand the inheritance of the tolerance to drought. The genetic investigations indicate that most of the traits related to abiotic stress have complex inheritance, controlled by several genes and highly influenced by environmental variation. This study aimed to address these two types of analysis for the study of an F2:3 maize population developed by Embrapa / Maize and Sorghum. The experiments conducted during 2006 and 2007 allowed us to estimate accurate inferences for both improvement and QTL mapping. Both approaches showed genetic variability for characteristics of interest, predicting the success of future studies and possible use in breeding programs. The genotype x environment interaction was predominantly complex, showed the need for the conduct and evaluation of segregating populations in different maize seasons (years) and in the water stress environment. The major gains with indirect selection for grain production are achieved in the prolificacy trait. However, the largest direct gains for grain production, in the water stress environment, are achieved based on the average performance of the genotypes. The QTL detection analysis allowed the generation of a linkage map with 82 microsatellite markers, covering 825.03 cM of the maize genome, with an average of one marker every 20 cM. Forty and five QTLs were mapped by the simple interval methodology: anthesis silking interval (six), plant height (thirteen), yield (six), leaf senescence (ten), prolificacy (five), and relative production (five). |
id |
UFV_e9f83a1895dc90093c19d12098fe430c |
---|---|
oai_identifier_str |
oai:locus.ufv.br:123456789/237 |
network_acronym_str |
UFV |
network_name_str |
LOCUS Repositório Institucional da UFV |
repository_id_str |
2145 |
spelling |
Tomé, Lívia Gracielle Oliveirahttp://lattes.cnpq.br/2043339462600497Guimarães, Cláudia Teixeirahttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4782346A3Carneiro, Pedro Crescêncio Souzahttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4728227T6Cruz, Cosme Damiãohttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4788274A6Tavares, Mara Garciahttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4798782P4Picoli, Edgard Augusto de Toledohttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4768537Z52015-03-26T12:10:36Z2011-02-102015-03-26T12:10:36Z2009-07-30TOMÉ, Lívia Gracielle Oliveira. Biometric analysis and mapping of QTLS for drought tolerance in maize. 2009. 161 f. Tese (Doutorado em Análises quantitativas e moleculares do Genoma; Biologia das células e dos tecidos) - Universidade Federal de Viçosa, Viçosa, 2009.http://locus.ufv.br/handle/123456789/237One of the major goals of crop improvement is the increase in agricultural productivity associated with the improvement for the consumption in human or animal feeding. These goals can be achieved through improvements in environmental conditions or by improving the genetic potential of populations. Recently, much has been discussed about global warming, climate change on the agricultural scenario in the face of these changes and the contribution of genetic improvement in mitigating the problems arising from global warming. Drought is a major environmental stresses that limit plant growth and consequently crop yields. Plants respond to water deficit and adapt to drought conditions through a variety of physiological and biochemical changes, including phenological changes. However, the losses in grain production in maize are severe when the crop is under water stress condition, which is one of the main limiting factors. Maize is particularly sensitive to water stress during the reproductive phase. National and international maize breeding programs, have considered the simultaneous study of (i) biometric analysis of traits related to drought and their correlation with grain yield and (ii) the use of molecular markers technology for detection of QTLs, which are the identification of genomic regions responsible for inducing tolerance to drought. Both studies make it possible for geneticists understand the inheritance of the tolerance to drought. The genetic investigations indicate that most of the traits related to abiotic stress have complex inheritance, controlled by several genes and highly influenced by environmental variation. This study aimed to address these two types of analysis for the study of an F2:3 maize population developed by Embrapa / Maize and Sorghum. The experiments conducted during 2006 and 2007 allowed us to estimate accurate inferences for both improvement and QTL mapping. Both approaches showed genetic variability for characteristics of interest, predicting the success of future studies and possible use in breeding programs. The genotype x environment interaction was predominantly complex, showed the need for the conduct and evaluation of segregating populations in different maize seasons (years) and in the water stress environment. The major gains with indirect selection for grain production are achieved in the prolificacy trait. However, the largest direct gains for grain production, in the water stress environment, are achieved based on the average performance of the genotypes. The QTL detection analysis allowed the generation of a linkage map with 82 microsatellite markers, covering 825.03 cM of the maize genome, with an average of one marker every 20 cM. Forty and five QTLs were mapped by the simple interval methodology: anthesis silking interval (six), plant height (thirteen), yield (six), leaf senescence (ten), prolificacy (five), and relative production (five).Um dos grandes objetivos do melhoramento de culturas é o aumento da produtividade agrícola associado à melhoria para o consumo humano ou animal. Esses objetivos podem ser alcançados por meio de melhorias nas condições ambientais ou por melhoria no potencial genético das populações. Nos últimos tempos, muito tem sido discutido a respeito do aquecimento global, mudanças climáticas, sobre o cenário agrícola frente a estas alterações e a contribuição do melhoramento genético na atenuação dos problemas advindo do aquecimento global. A seca é um dos maiores estresses ambientais que limitam o crescimento de plantas e, consequentemente, o rendimento das culturas. As plantas respondem ao déficit hídrico e se adaptam às condições de seca por meio de várias alterações fisiológicas e bioquímicas, incluindo modificações fenológicas. Entretanto, no milho, as perdas na produção de grãos são severas quando a cultura está sob condição de estresse hídrico, sendo este um dos principais fatores limitantes. O milho é particularmente sensível ao estresse hídrico na fase reprodutiva. Os programas de melhoramento de milho, nacionais e internacionais, têm considerado o estudo simultâneo de (i) análises biométricas de caracteres relacionados à seca e correlacionados à produção de grãos e (ii) ao uso da tecnologia de marcadores moleculares para detecção de QTLs, que são a identificação de regiões genômicas responsáveis por induzir a tolerância à seca. Ambos os estudos possibilitam aosgeneticistas o entendimento da herança do caráter tolerância à seca. As investigações genéticas indicam que a maioria dos caracteres relacionados ao estresse abiótico é de herança complexa, controlados por vários genes e altamente influenciados pela variação ambiental. O presente trabalho teve como objetivos abordar estes dois tipos de análises para o estudo de uma população F2:3 de milho desenvolvida pela Embrapa/Milho e sorgo. Os experimentos instalados nos anos de 2006 e 2007 permitiram realizar inferências precisas para fins de melhoramento e para o mapeamento de QTLs. Ambos apresentaram variabilidade genética para as características de interesse, predizendo o sucesso de futuros estudos e uma possível utilização em programas de melhoramento. A interação genótipos x ambientes foi, predominantemente, complexa, mostrou a necessidade da condução e avaliação das populações segregantes nos diferentes anos da cultura do milho, bem como no ambiente com estresse hídrico. Os maiores ganhos com a seleção indireta para produção de grãos é através da característica prolificidade. Entretanto, os maiores ganhos diretos para produção de grãos, no ambiente de seca são realizados com base no desempenho médio dos genótipos. Da análise de detecção de QTLs, foi gerado um mapa de ligação com 82 marcadores microssatélites, cobrindo 825,03 cM do genoma do milho, com um marcador em média a cada 20 cM. Foram mapeados 45 QTLs pela metodologia de intervalo simples: seis para intervalo entre florescimentos, treze para altura de plantas, seis para produção de grãos, dez para folhas mortas, cinco para prolificidade e cinco para produção relativa.Fundação de Amparo a Pesquisa do Estado de Minas Geraisapplication/pdfporUniversidade Federal de ViçosaDoutorado em Biologia Celular e EstruturalUFVBRAnálises quantitativas e moleculares do Genoma; Biologia das células e dos tecidosMilhoInteração genótipo por ambienteGanhos por seleçãoMapeamento de QTLTolerância à secaMaizeGenotype x environment interactionGains with selectionQTL mappingDrought toleranceCNPQ::CIENCIAS BIOLOGICAS::GENETICA::GENETICA QUANTITATIVAAnálises biométricas e mapeamento de QTLS para tolerância à seca em milhoBiometric analysis and mapping of QTLS for drought tolerance in maizeinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALtexto completo.pdfapplication/pdf1178365https://locus.ufv.br//bitstream/123456789/237/1/texto%20completo.pdf1ffcce093035168dcbd5bae264a1c32fMD51TEXTtexto completo.pdf.txttexto completo.pdf.txtExtracted texttext/plain235151https://locus.ufv.br//bitstream/123456789/237/2/texto%20completo.pdf.txtd61a27235e03ad7a37c99c6ed667546aMD52THUMBNAILtexto completo.pdf.jpgtexto completo.pdf.jpgIM Thumbnailimage/jpeg3619https://locus.ufv.br//bitstream/123456789/237/3/texto%20completo.pdf.jpg0dd087ad11c86cbf3b65ab5e1aa9a525MD53123456789/2372016-04-06 23:00:31.356oai:locus.ufv.br:123456789/237Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452016-04-07T02:00:31LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false |
dc.title.por.fl_str_mv |
Análises biométricas e mapeamento de QTLS para tolerância à seca em milho |
dc.title.alternative.eng.fl_str_mv |
Biometric analysis and mapping of QTLS for drought tolerance in maize |
title |
Análises biométricas e mapeamento de QTLS para tolerância à seca em milho |
spellingShingle |
Análises biométricas e mapeamento de QTLS para tolerância à seca em milho Tomé, Lívia Gracielle Oliveira Milho Interação genótipo por ambiente Ganhos por seleção Mapeamento de QTL Tolerância à seca Maize Genotype x environment interaction Gains with selection QTL mapping Drought tolerance CNPQ::CIENCIAS BIOLOGICAS::GENETICA::GENETICA QUANTITATIVA |
title_short |
Análises biométricas e mapeamento de QTLS para tolerância à seca em milho |
title_full |
Análises biométricas e mapeamento de QTLS para tolerância à seca em milho |
title_fullStr |
Análises biométricas e mapeamento de QTLS para tolerância à seca em milho |
title_full_unstemmed |
Análises biométricas e mapeamento de QTLS para tolerância à seca em milho |
title_sort |
Análises biométricas e mapeamento de QTLS para tolerância à seca em milho |
author |
Tomé, Lívia Gracielle Oliveira |
author_facet |
Tomé, Lívia Gracielle Oliveira |
author_role |
author |
dc.contributor.authorLattes.por.fl_str_mv |
http://lattes.cnpq.br/2043339462600497 |
dc.contributor.author.fl_str_mv |
Tomé, Lívia Gracielle Oliveira |
dc.contributor.advisor-co1.fl_str_mv |
Guimarães, Cláudia Teixeira |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4782346A3 |
dc.contributor.advisor-co2.fl_str_mv |
Carneiro, Pedro Crescêncio Souza |
dc.contributor.advisor-co2Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4728227T6 |
dc.contributor.advisor1.fl_str_mv |
Cruz, Cosme Damião |
dc.contributor.advisor1Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4788274A6 |
dc.contributor.referee1.fl_str_mv |
Tavares, Mara Garcia |
dc.contributor.referee1Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4798782P4 |
dc.contributor.referee2.fl_str_mv |
Picoli, Edgard Augusto de Toledo |
dc.contributor.referee2Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4768537Z5 |
contributor_str_mv |
Guimarães, Cláudia Teixeira Carneiro, Pedro Crescêncio Souza Cruz, Cosme Damião Tavares, Mara Garcia Picoli, Edgard Augusto de Toledo |
dc.subject.por.fl_str_mv |
Milho Interação genótipo por ambiente Ganhos por seleção Mapeamento de QTL Tolerância à seca |
topic |
Milho Interação genótipo por ambiente Ganhos por seleção Mapeamento de QTL Tolerância à seca Maize Genotype x environment interaction Gains with selection QTL mapping Drought tolerance CNPQ::CIENCIAS BIOLOGICAS::GENETICA::GENETICA QUANTITATIVA |
dc.subject.eng.fl_str_mv |
Maize Genotype x environment interaction Gains with selection QTL mapping Drought tolerance |
dc.subject.cnpq.fl_str_mv |
CNPQ::CIENCIAS BIOLOGICAS::GENETICA::GENETICA QUANTITATIVA |
description |
One of the major goals of crop improvement is the increase in agricultural productivity associated with the improvement for the consumption in human or animal feeding. These goals can be achieved through improvements in environmental conditions or by improving the genetic potential of populations. Recently, much has been discussed about global warming, climate change on the agricultural scenario in the face of these changes and the contribution of genetic improvement in mitigating the problems arising from global warming. Drought is a major environmental stresses that limit plant growth and consequently crop yields. Plants respond to water deficit and adapt to drought conditions through a variety of physiological and biochemical changes, including phenological changes. However, the losses in grain production in maize are severe when the crop is under water stress condition, which is one of the main limiting factors. Maize is particularly sensitive to water stress during the reproductive phase. National and international maize breeding programs, have considered the simultaneous study of (i) biometric analysis of traits related to drought and their correlation with grain yield and (ii) the use of molecular markers technology for detection of QTLs, which are the identification of genomic regions responsible for inducing tolerance to drought. Both studies make it possible for geneticists understand the inheritance of the tolerance to drought. The genetic investigations indicate that most of the traits related to abiotic stress have complex inheritance, controlled by several genes and highly influenced by environmental variation. This study aimed to address these two types of analysis for the study of an F2:3 maize population developed by Embrapa / Maize and Sorghum. The experiments conducted during 2006 and 2007 allowed us to estimate accurate inferences for both improvement and QTL mapping. Both approaches showed genetic variability for characteristics of interest, predicting the success of future studies and possible use in breeding programs. The genotype x environment interaction was predominantly complex, showed the need for the conduct and evaluation of segregating populations in different maize seasons (years) and in the water stress environment. The major gains with indirect selection for grain production are achieved in the prolificacy trait. However, the largest direct gains for grain production, in the water stress environment, are achieved based on the average performance of the genotypes. The QTL detection analysis allowed the generation of a linkage map with 82 microsatellite markers, covering 825.03 cM of the maize genome, with an average of one marker every 20 cM. Forty and five QTLs were mapped by the simple interval methodology: anthesis silking interval (six), plant height (thirteen), yield (six), leaf senescence (ten), prolificacy (five), and relative production (five). |
publishDate |
2009 |
dc.date.issued.fl_str_mv |
2009-07-30 |
dc.date.available.fl_str_mv |
2011-02-10 2015-03-26T12:10:36Z |
dc.date.accessioned.fl_str_mv |
2015-03-26T12:10:36Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
TOMÉ, Lívia Gracielle Oliveira. Biometric analysis and mapping of QTLS for drought tolerance in maize. 2009. 161 f. Tese (Doutorado em Análises quantitativas e moleculares do Genoma; Biologia das células e dos tecidos) - Universidade Federal de Viçosa, Viçosa, 2009. |
dc.identifier.uri.fl_str_mv |
http://locus.ufv.br/handle/123456789/237 |
identifier_str_mv |
TOMÉ, Lívia Gracielle Oliveira. Biometric analysis and mapping of QTLS for drought tolerance in maize. 2009. 161 f. Tese (Doutorado em Análises quantitativas e moleculares do Genoma; Biologia das células e dos tecidos) - Universidade Federal de Viçosa, Viçosa, 2009. |
url |
http://locus.ufv.br/handle/123456789/237 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Viçosa |
dc.publisher.program.fl_str_mv |
Doutorado em Biologia Celular e Estrutural |
dc.publisher.initials.fl_str_mv |
UFV |
dc.publisher.country.fl_str_mv |
BR |
dc.publisher.department.fl_str_mv |
Análises quantitativas e moleculares do Genoma; Biologia das células e dos tecidos |
publisher.none.fl_str_mv |
Universidade Federal de Viçosa |
dc.source.none.fl_str_mv |
reponame:LOCUS Repositório Institucional da UFV instname:Universidade Federal de Viçosa (UFV) instacron:UFV |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
UFV |
institution |
UFV |
reponame_str |
LOCUS Repositório Institucional da UFV |
collection |
LOCUS Repositório Institucional da UFV |
bitstream.url.fl_str_mv |
https://locus.ufv.br//bitstream/123456789/237/1/texto%20completo.pdf https://locus.ufv.br//bitstream/123456789/237/2/texto%20completo.pdf.txt https://locus.ufv.br//bitstream/123456789/237/3/texto%20completo.pdf.jpg |
bitstream.checksum.fl_str_mv |
1ffcce093035168dcbd5bae264a1c32f d61a27235e03ad7a37c99c6ed667546a 0dd087ad11c86cbf3b65ab5e1aa9a525 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
fabiojreis@ufv.br |
_version_ |
1801212837987614720 |