Comparison of methods used to identify superior individuals in genomic selection in plant breeding

Detalhes bibliográficos
Autor(a) principal: Bhering, L.L.
Data de Publicação: 2015
Outros Autores: Junqueira, V.S., Peixoto, L.A., Cruz, C.D., Laviola, B.G.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: http://dx.doi.org/10.4238/2015.September.9.26
http://www.locus.ufv.br/handle/123456789/12039
Resumo: The aim of this study was to evaluate different methods used in genomic selection, and to verify those that select a higher proportion of individuals with superior genotypes. Thus, F2 populations of different sizes were simulated (100, 200, 500, and 1000 individuals) with 10 replications each. These consisted of 10 linkage groups (LG) of 100 cM each, containing 100 equally spaced markers per linkage group, of which 200 controlled the characteristics, defined as the 20 initials of each LG. Genetic and phenotypic values were simulated assuming binomial distribution of effects for each LG, and the absence of dominance. For phenotypic values, heritabilities of 20, 50, and 80% were considered. To compare methodologies, the analysis processing time, coefficient of coincidence (selection of 5, 10, and 20% of superior individuals), and Spearman correlation between true genetic values, and the genomic values predicted by each methodology were determined. Considering the processing time, the three methodologies were statistically different, rrBLUP was the fastest, and Bayesian LASSO was the slowest. Spearman correlation revealed that the rrBLUP and GBLUP methodologies were equivalent, and Bayesian LASSO provided the lowest correlation values. Similar results were obtained in coincidence variables among the individuals selected, in which Bayesian LASSO differed statistically and presented a lower value than the other methodologies. Therefore, for the scenarios evaluated, rrBLUP is the best methodology for the selection of genetically superior individuals.
id UFV_eb96613137735b00f502548869e6718b
oai_identifier_str oai:locus.ufv.br:123456789/12039
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Bhering, L.L.Junqueira, V.S.Peixoto, L.A.Cruz, C.D.Laviola, B.G.2017-10-11T17:53:51Z2017-10-11T17:53:51Z2015-09-0916765680http://dx.doi.org/10.4238/2015.September.9.26http://www.locus.ufv.br/handle/123456789/12039The aim of this study was to evaluate different methods used in genomic selection, and to verify those that select a higher proportion of individuals with superior genotypes. Thus, F2 populations of different sizes were simulated (100, 200, 500, and 1000 individuals) with 10 replications each. These consisted of 10 linkage groups (LG) of 100 cM each, containing 100 equally spaced markers per linkage group, of which 200 controlled the characteristics, defined as the 20 initials of each LG. Genetic and phenotypic values were simulated assuming binomial distribution of effects for each LG, and the absence of dominance. For phenotypic values, heritabilities of 20, 50, and 80% were considered. To compare methodologies, the analysis processing time, coefficient of coincidence (selection of 5, 10, and 20% of superior individuals), and Spearman correlation between true genetic values, and the genomic values predicted by each methodology were determined. Considering the processing time, the three methodologies were statistically different, rrBLUP was the fastest, and Bayesian LASSO was the slowest. Spearman correlation revealed that the rrBLUP and GBLUP methodologies were equivalent, and Bayesian LASSO provided the lowest correlation values. Similar results were obtained in coincidence variables among the individuals selected, in which Bayesian LASSO differed statistically and presented a lower value than the other methodologies. Therefore, for the scenarios evaluated, rrBLUP is the best methodology for the selection of genetically superior individuals.engGenetics and Molecular Researchv.4 n.(3): p10888-10896, September 2015StatisticsBiometricSNPsSelectionComparison of methods used to identify superior individuals in genomic selection in plant breedinginfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALgmr6508.pdfgmr6508.pdftexto completoapplication/pdf460381https://locus.ufv.br//bitstream/123456789/12039/1/gmr6508.pdf08b76a72db84495e923d1dfa69e1556dMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/12039/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILgmr6508.pdf.jpggmr6508.pdf.jpgIM Thumbnailimage/jpeg4572https://locus.ufv.br//bitstream/123456789/12039/3/gmr6508.pdf.jpg75459f797264cb253dceb85420975f68MD53123456789/120392017-10-11 23:01:04.469oai:locus.ufv.br:123456789/12039Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452017-10-12T02:01:04LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.en.fl_str_mv Comparison of methods used to identify superior individuals in genomic selection in plant breeding
title Comparison of methods used to identify superior individuals in genomic selection in plant breeding
spellingShingle Comparison of methods used to identify superior individuals in genomic selection in plant breeding
Bhering, L.L.
Statistics
Biometric
SNPs
Selection
title_short Comparison of methods used to identify superior individuals in genomic selection in plant breeding
title_full Comparison of methods used to identify superior individuals in genomic selection in plant breeding
title_fullStr Comparison of methods used to identify superior individuals in genomic selection in plant breeding
title_full_unstemmed Comparison of methods used to identify superior individuals in genomic selection in plant breeding
title_sort Comparison of methods used to identify superior individuals in genomic selection in plant breeding
author Bhering, L.L.
author_facet Bhering, L.L.
Junqueira, V.S.
Peixoto, L.A.
Cruz, C.D.
Laviola, B.G.
author_role author
author2 Junqueira, V.S.
Peixoto, L.A.
Cruz, C.D.
Laviola, B.G.
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Bhering, L.L.
Junqueira, V.S.
Peixoto, L.A.
Cruz, C.D.
Laviola, B.G.
dc.subject.pt-BR.fl_str_mv Statistics
Biometric
SNPs
Selection
topic Statistics
Biometric
SNPs
Selection
description The aim of this study was to evaluate different methods used in genomic selection, and to verify those that select a higher proportion of individuals with superior genotypes. Thus, F2 populations of different sizes were simulated (100, 200, 500, and 1000 individuals) with 10 replications each. These consisted of 10 linkage groups (LG) of 100 cM each, containing 100 equally spaced markers per linkage group, of which 200 controlled the characteristics, defined as the 20 initials of each LG. Genetic and phenotypic values were simulated assuming binomial distribution of effects for each LG, and the absence of dominance. For phenotypic values, heritabilities of 20, 50, and 80% were considered. To compare methodologies, the analysis processing time, coefficient of coincidence (selection of 5, 10, and 20% of superior individuals), and Spearman correlation between true genetic values, and the genomic values predicted by each methodology were determined. Considering the processing time, the three methodologies were statistically different, rrBLUP was the fastest, and Bayesian LASSO was the slowest. Spearman correlation revealed that the rrBLUP and GBLUP methodologies were equivalent, and Bayesian LASSO provided the lowest correlation values. Similar results were obtained in coincidence variables among the individuals selected, in which Bayesian LASSO differed statistically and presented a lower value than the other methodologies. Therefore, for the scenarios evaluated, rrBLUP is the best methodology for the selection of genetically superior individuals.
publishDate 2015
dc.date.issued.fl_str_mv 2015-09-09
dc.date.accessioned.fl_str_mv 2017-10-11T17:53:51Z
dc.date.available.fl_str_mv 2017-10-11T17:53:51Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.4238/2015.September.9.26
http://www.locus.ufv.br/handle/123456789/12039
dc.identifier.issn.none.fl_str_mv 16765680
identifier_str_mv 16765680
url http://dx.doi.org/10.4238/2015.September.9.26
http://www.locus.ufv.br/handle/123456789/12039
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartofseries.pt-BR.fl_str_mv v.4 n.(3): p10888-10896, September 2015
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Genetics and Molecular Research
publisher.none.fl_str_mv Genetics and Molecular Research
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/12039/1/gmr6508.pdf
https://locus.ufv.br//bitstream/123456789/12039/2/license.txt
https://locus.ufv.br//bitstream/123456789/12039/3/gmr6508.pdf.jpg
bitstream.checksum.fl_str_mv 08b76a72db84495e923d1dfa69e1556d
8a4605be74aa9ea9d79846c1fba20a33
75459f797264cb253dceb85420975f68
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1801213115766931456