Soil physical change and sugarcane stalk yield induced by cover crop and soil tillage
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | LOCUS Repositório Institucional da UFV |
Texto Completo: | https://locus.ufv.br//handle/123456789/29704 |
Resumo: | Conventional tillage and intensive machinery traffic are the major causes of physical soil degradation in sugarcane fields. This study evaluates the impact of adopting conservation management practices during sugarcane planting on soil physical properties and stalk yield of sugarcane in the municipality of Ibitinga, state of São Paulo, Brazil. The experimental design (split-block) included four cover crops and three soil tillage systems, with three repetitions. For comparison purposes, a control treatment was also included (without cover crop and under conventional tillage). Sampling for soil physical analysis was performed in three layers that coincide with soil horizons A (0.00-0.20 m), AB (0.20-0.30 m), and Bt (0.30-0.70 m), during cane-plant and first sugarcane ratoon cycles. The results showed that cultivation of sunn hemp associated with deep subsoiling induced high stalk yield of sugarcane in both production cycles, cane plant (116 Mg ha -1 ) and first ratoon (114 Mg ha -1 ), with a net gain of 11 and 9 Mg ha -1 compared with the control treatment, respectively. However, these results were not sufficient to induce significant differences in sugarcane yield. Nonetheless, the use of sunn hemp and millet, associated with subsoiling (at 0.40 or 0.70 m depth) during sugarcane planting, are promising management strategies to sustain better soil’s physical quality when compared to traditional management, conventional soil tillage without cover crops and/or cash crop, as peanuts, that increase the risks of soil compaction and physical degradation. |
id |
UFV_edd289c2148fda2005ca04517546edc0 |
---|---|
oai_identifier_str |
oai:locus.ufv.br:123456789/29704 |
network_acronym_str |
UFV |
network_name_str |
LOCUS Repositório Institucional da UFV |
repository_id_str |
2145 |
spelling |
Farhate, Camila Viana VieiraSouza, Zigomar Menezes deCherubin, Maurício RobertoLovera, Lenon HenriqueOliveira, Ingrid Nehmi deJúnnyor, Wellingthon da Silva GuimarãesJunior, Newton La Scala2022-08-18T18:31:43Z2022-08-18T18:31:43Z2021-10-25Farhate CVV, Souza ZM, Cherubim MR, Lovera LH, Oliveira IN, Guimarães Júnnyor WS, La Scala Jr. N. Soil physical change and sugarcane stalk yield induced by cover crop and soil tillage. Rev Bras Cienc Solo. 2022;46:e0210123.1806-9657https://locus.ufv.br//handle/123456789/29704Conventional tillage and intensive machinery traffic are the major causes of physical soil degradation in sugarcane fields. This study evaluates the impact of adopting conservation management practices during sugarcane planting on soil physical properties and stalk yield of sugarcane in the municipality of Ibitinga, state of São Paulo, Brazil. The experimental design (split-block) included four cover crops and three soil tillage systems, with three repetitions. For comparison purposes, a control treatment was also included (without cover crop and under conventional tillage). Sampling for soil physical analysis was performed in three layers that coincide with soil horizons A (0.00-0.20 m), AB (0.20-0.30 m), and Bt (0.30-0.70 m), during cane-plant and first sugarcane ratoon cycles. The results showed that cultivation of sunn hemp associated with deep subsoiling induced high stalk yield of sugarcane in both production cycles, cane plant (116 Mg ha -1 ) and first ratoon (114 Mg ha -1 ), with a net gain of 11 and 9 Mg ha -1 compared with the control treatment, respectively. However, these results were not sufficient to induce significant differences in sugarcane yield. Nonetheless, the use of sunn hemp and millet, associated with subsoiling (at 0.40 or 0.70 m depth) during sugarcane planting, are promising management strategies to sustain better soil’s physical quality when compared to traditional management, conventional soil tillage without cover crops and/or cash crop, as peanuts, that increase the risks of soil compaction and physical degradation.engSociedade Brasileira de Ciência do SoloVol. 46, 2022.Creative Commons Attribution Licenseinfo:eu-repo/semantics/openAccesssoil compactionsunn hempmilletno-tillage systemsubsoilingSoil physical change and sugarcane stalk yield induced by cover crop and soil tillageinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlereponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALartigo.pdfartigo.pdfTexto completoapplication/pdf1741967https://locus.ufv.br//bitstream/123456789/29704/1/artigo.pdf10b01c19009c5627b3ea9990d2119593MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/29704/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/297042022-08-18 15:32:15.067oai:locus.ufv.br:123456789/29704Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452022-08-18T18:32:15LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false |
dc.title.en.fl_str_mv |
Soil physical change and sugarcane stalk yield induced by cover crop and soil tillage |
title |
Soil physical change and sugarcane stalk yield induced by cover crop and soil tillage |
spellingShingle |
Soil physical change and sugarcane stalk yield induced by cover crop and soil tillage Farhate, Camila Viana Vieira soil compaction sunn hemp millet no-tillage system subsoiling |
title_short |
Soil physical change and sugarcane stalk yield induced by cover crop and soil tillage |
title_full |
Soil physical change and sugarcane stalk yield induced by cover crop and soil tillage |
title_fullStr |
Soil physical change and sugarcane stalk yield induced by cover crop and soil tillage |
title_full_unstemmed |
Soil physical change and sugarcane stalk yield induced by cover crop and soil tillage |
title_sort |
Soil physical change and sugarcane stalk yield induced by cover crop and soil tillage |
author |
Farhate, Camila Viana Vieira |
author_facet |
Farhate, Camila Viana Vieira Souza, Zigomar Menezes de Cherubin, Maurício Roberto Lovera, Lenon Henrique Oliveira, Ingrid Nehmi de Júnnyor, Wellingthon da Silva Guimarães Junior, Newton La Scala |
author_role |
author |
author2 |
Souza, Zigomar Menezes de Cherubin, Maurício Roberto Lovera, Lenon Henrique Oliveira, Ingrid Nehmi de Júnnyor, Wellingthon da Silva Guimarães Junior, Newton La Scala |
author2_role |
author author author author author author |
dc.contributor.author.fl_str_mv |
Farhate, Camila Viana Vieira Souza, Zigomar Menezes de Cherubin, Maurício Roberto Lovera, Lenon Henrique Oliveira, Ingrid Nehmi de Júnnyor, Wellingthon da Silva Guimarães Junior, Newton La Scala |
dc.subject.eng.fl_str_mv |
soil compaction sunn hemp millet no-tillage system subsoiling |
topic |
soil compaction sunn hemp millet no-tillage system subsoiling |
description |
Conventional tillage and intensive machinery traffic are the major causes of physical soil degradation in sugarcane fields. This study evaluates the impact of adopting conservation management practices during sugarcane planting on soil physical properties and stalk yield of sugarcane in the municipality of Ibitinga, state of São Paulo, Brazil. The experimental design (split-block) included four cover crops and three soil tillage systems, with three repetitions. For comparison purposes, a control treatment was also included (without cover crop and under conventional tillage). Sampling for soil physical analysis was performed in three layers that coincide with soil horizons A (0.00-0.20 m), AB (0.20-0.30 m), and Bt (0.30-0.70 m), during cane-plant and first sugarcane ratoon cycles. The results showed that cultivation of sunn hemp associated with deep subsoiling induced high stalk yield of sugarcane in both production cycles, cane plant (116 Mg ha -1 ) and first ratoon (114 Mg ha -1 ), with a net gain of 11 and 9 Mg ha -1 compared with the control treatment, respectively. However, these results were not sufficient to induce significant differences in sugarcane yield. Nonetheless, the use of sunn hemp and millet, associated with subsoiling (at 0.40 or 0.70 m depth) during sugarcane planting, are promising management strategies to sustain better soil’s physical quality when compared to traditional management, conventional soil tillage without cover crops and/or cash crop, as peanuts, that increase the risks of soil compaction and physical degradation. |
publishDate |
2021 |
dc.date.issued.fl_str_mv |
2021-10-25 |
dc.date.accessioned.fl_str_mv |
2022-08-18T18:31:43Z |
dc.date.available.fl_str_mv |
2022-08-18T18:31:43Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
Farhate CVV, Souza ZM, Cherubim MR, Lovera LH, Oliveira IN, Guimarães Júnnyor WS, La Scala Jr. N. Soil physical change and sugarcane stalk yield induced by cover crop and soil tillage. Rev Bras Cienc Solo. 2022;46:e0210123. |
dc.identifier.uri.fl_str_mv |
https://locus.ufv.br//handle/123456789/29704 |
dc.identifier.issn.none.fl_str_mv |
1806-9657 |
identifier_str_mv |
Farhate CVV, Souza ZM, Cherubim MR, Lovera LH, Oliveira IN, Guimarães Júnnyor WS, La Scala Jr. N. Soil physical change and sugarcane stalk yield induced by cover crop and soil tillage. Rev Bras Cienc Solo. 2022;46:e0210123. 1806-9657 |
url |
https://locus.ufv.br//handle/123456789/29704 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.pt-BR.fl_str_mv |
Vol. 46, 2022. |
dc.rights.driver.fl_str_mv |
Creative Commons Attribution License info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Creative Commons Attribution License |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Ciência do Solo |
publisher.none.fl_str_mv |
Sociedade Brasileira de Ciência do Solo |
dc.source.none.fl_str_mv |
reponame:LOCUS Repositório Institucional da UFV instname:Universidade Federal de Viçosa (UFV) instacron:UFV |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
UFV |
institution |
UFV |
reponame_str |
LOCUS Repositório Institucional da UFV |
collection |
LOCUS Repositório Institucional da UFV |
bitstream.url.fl_str_mv |
https://locus.ufv.br//bitstream/123456789/29704/1/artigo.pdf https://locus.ufv.br//bitstream/123456789/29704/2/license.txt |
bitstream.checksum.fl_str_mv |
10b01c19009c5627b3ea9990d2119593 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
fabiojreis@ufv.br |
_version_ |
1801213091089743872 |