Performance strategies affect mammary gland development in prepubertal heifers

Detalhes bibliográficos
Autor(a) principal: Albino, R. L.
Data de Publicação: 2017
Outros Autores: Sguizzato, A. L., Daniels, K. M., Duarte, M. S., Lopes, M. M., Guimarães, S. E. F., Weller, M. M. D. C. A., Marcondes, M. I.
Tipo de documento: Artigo
Idioma: por
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: https://doi.org/10.3168/jds.2016-12489
http://www.locus.ufv.br/handle/123456789/23297
Resumo: In Brazil, the majority of dairy cattle are Holstein × Gyr (H×G). It is unknown whether excessive energy intake negatively affects their mammary development to the same extent as in purebred Holsteins. We hypothesized that mammary development of H×G heifers can be affected by dietary energy supply. We evaluated the effect of different average daily gains (ADG) achieved by feeding different amounts of a standard diet during the growing period on biometric measurements, development of mammary parenchyma (PAR) and mammary fat pad (MFP), and blood hormones. At the outset of this 84-d experiment, H×G heifers (n = 18) weighed 102.2 ± 3.4 kg and were 3 to 4 mo of age. Heifers were randomly assigned to 1 of 3 ADG programs using a completely randomized design. Treatments were high gain (HG; n = 6), where heifers were fed to gain 1 kg/d; low gain (LG; n = 6), where heifers were fed to gain 0.5 kg/d; and maintenance (MA; n = 6), where heifers were fed to gain a minimal amount of weight per day. Heifers were fed varying amounts of a single TMR to support desired BW gains. Over the 84 d, periodic biometric and blood hormone measurements were obtained. On d 84, all heifers were slaughtered and carcass and mammary samples were collected. At the end, HG heifers weighed the most (181 ± 7.5 kg), followed by LG (146 ± 7.5 kg) and MA (107 ± 7.5 kg) heifers. The ADG were near expected values and averaged 0.907, 0.500, and 0.105 ± 0.03 kg/d for HG, LG, and MA, respectively. In addition, body lengths, heart girths, and withers heights were affected by dietary treatment, with MA heifers generally being the smallest and HG heifers generally being the largest. Body condition scores differed by treatment and were highest in HG and lowest in MA heifers; in vivo subcutaneous fat thickness measurement and direct analysis of carcass composition supported this. The HG heifers had the heaviest MFP, followed by LG and then MA heifers. Amount of PAR was highest in LG heifers and was the same for HG and MA heifers. The percentage of udder mass occupied by PAR was lowest in HG heifers, differing from LG and MA heifers. Composition of MFP was not evaluated. Regarding PAR composition, no differences in ash or DM were found. On the other hand, CP concentration of PAR for HG heifers was lower than that for LG heifers, which was lower than that for MA heifers. Regarding the fat content, HG treatment was higher than LG and MA treatment, which did not differ from each other. In PAR, differences in relative abundance of genes related to both stimulation and inhibition of mammary growth were observed to depend on dietary treatment, sampling day, or both. The same can be said for most of the blood hormones that were measured in this experiment. In this experiment, high ADG achieved by feeding different amounts of a standard diet during the growing period negatively affected mammary development.
id UFV_eea16fc842c42e347aaf8740b9446e21
oai_identifier_str oai:locus.ufv.br:123456789/23297
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Albino, R. L.Sguizzato, A. L.Daniels, K. M.Duarte, M. S.Lopes, M. M.Guimarães, S. E. F.Weller, M. M. D. C. A.Marcondes, M. I.2019-01-31T20:29:14Z2019-01-31T20:29:14Z2017-100022-0302https://doi.org/10.3168/jds.2016-12489http://www.locus.ufv.br/handle/123456789/23297In Brazil, the majority of dairy cattle are Holstein × Gyr (H×G). It is unknown whether excessive energy intake negatively affects their mammary development to the same extent as in purebred Holsteins. We hypothesized that mammary development of H×G heifers can be affected by dietary energy supply. We evaluated the effect of different average daily gains (ADG) achieved by feeding different amounts of a standard diet during the growing period on biometric measurements, development of mammary parenchyma (PAR) and mammary fat pad (MFP), and blood hormones. At the outset of this 84-d experiment, H×G heifers (n = 18) weighed 102.2 ± 3.4 kg and were 3 to 4 mo of age. Heifers were randomly assigned to 1 of 3 ADG programs using a completely randomized design. Treatments were high gain (HG; n = 6), where heifers were fed to gain 1 kg/d; low gain (LG; n = 6), where heifers were fed to gain 0.5 kg/d; and maintenance (MA; n = 6), where heifers were fed to gain a minimal amount of weight per day. Heifers were fed varying amounts of a single TMR to support desired BW gains. Over the 84 d, periodic biometric and blood hormone measurements were obtained. On d 84, all heifers were slaughtered and carcass and mammary samples were collected. At the end, HG heifers weighed the most (181 ± 7.5 kg), followed by LG (146 ± 7.5 kg) and MA (107 ± 7.5 kg) heifers. The ADG were near expected values and averaged 0.907, 0.500, and 0.105 ± 0.03 kg/d for HG, LG, and MA, respectively. In addition, body lengths, heart girths, and withers heights were affected by dietary treatment, with MA heifers generally being the smallest and HG heifers generally being the largest. Body condition scores differed by treatment and were highest in HG and lowest in MA heifers; in vivo subcutaneous fat thickness measurement and direct analysis of carcass composition supported this. The HG heifers had the heaviest MFP, followed by LG and then MA heifers. Amount of PAR was highest in LG heifers and was the same for HG and MA heifers. The percentage of udder mass occupied by PAR was lowest in HG heifers, differing from LG and MA heifers. Composition of MFP was not evaluated. Regarding PAR composition, no differences in ash or DM were found. On the other hand, CP concentration of PAR for HG heifers was lower than that for LG heifers, which was lower than that for MA heifers. Regarding the fat content, HG treatment was higher than LG and MA treatment, which did not differ from each other. In PAR, differences in relative abundance of genes related to both stimulation and inhibition of mammary growth were observed to depend on dietary treatment, sampling day, or both. The same can be said for most of the blood hormones that were measured in this experiment. In this experiment, high ADG achieved by feeding different amounts of a standard diet during the growing period negatively affected mammary development.porJournal of Dairy ScienceVolume 100, Issue 10, Pages 8033-8042, October 2017HeiferMammaryGlanddietPerformance strategies affect mammary gland development in prepubertal heifersinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALartigo.pdfartigo.pdfTexto completoapplication/pdf803273https://locus.ufv.br//bitstream/123456789/23297/1/artigo.pdf0a7d2f30879a8ddd90acc27de37d2e0bMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/23297/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/232972022-06-23 11:04:15.196oai:locus.ufv.br:123456789/23297Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452022-06-23T14:04:15LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.en.fl_str_mv Performance strategies affect mammary gland development in prepubertal heifers
title Performance strategies affect mammary gland development in prepubertal heifers
spellingShingle Performance strategies affect mammary gland development in prepubertal heifers
Albino, R. L.
Heifer
Mammary
Glanddiet
title_short Performance strategies affect mammary gland development in prepubertal heifers
title_full Performance strategies affect mammary gland development in prepubertal heifers
title_fullStr Performance strategies affect mammary gland development in prepubertal heifers
title_full_unstemmed Performance strategies affect mammary gland development in prepubertal heifers
title_sort Performance strategies affect mammary gland development in prepubertal heifers
author Albino, R. L.
author_facet Albino, R. L.
Sguizzato, A. L.
Daniels, K. M.
Duarte, M. S.
Lopes, M. M.
Guimarães, S. E. F.
Weller, M. M. D. C. A.
Marcondes, M. I.
author_role author
author2 Sguizzato, A. L.
Daniels, K. M.
Duarte, M. S.
Lopes, M. M.
Guimarães, S. E. F.
Weller, M. M. D. C. A.
Marcondes, M. I.
author2_role author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Albino, R. L.
Sguizzato, A. L.
Daniels, K. M.
Duarte, M. S.
Lopes, M. M.
Guimarães, S. E. F.
Weller, M. M. D. C. A.
Marcondes, M. I.
dc.subject.pt-BR.fl_str_mv Heifer
Mammary
Glanddiet
topic Heifer
Mammary
Glanddiet
description In Brazil, the majority of dairy cattle are Holstein × Gyr (H×G). It is unknown whether excessive energy intake negatively affects their mammary development to the same extent as in purebred Holsteins. We hypothesized that mammary development of H×G heifers can be affected by dietary energy supply. We evaluated the effect of different average daily gains (ADG) achieved by feeding different amounts of a standard diet during the growing period on biometric measurements, development of mammary parenchyma (PAR) and mammary fat pad (MFP), and blood hormones. At the outset of this 84-d experiment, H×G heifers (n = 18) weighed 102.2 ± 3.4 kg and were 3 to 4 mo of age. Heifers were randomly assigned to 1 of 3 ADG programs using a completely randomized design. Treatments were high gain (HG; n = 6), where heifers were fed to gain 1 kg/d; low gain (LG; n = 6), where heifers were fed to gain 0.5 kg/d; and maintenance (MA; n = 6), where heifers were fed to gain a minimal amount of weight per day. Heifers were fed varying amounts of a single TMR to support desired BW gains. Over the 84 d, periodic biometric and blood hormone measurements were obtained. On d 84, all heifers were slaughtered and carcass and mammary samples were collected. At the end, HG heifers weighed the most (181 ± 7.5 kg), followed by LG (146 ± 7.5 kg) and MA (107 ± 7.5 kg) heifers. The ADG were near expected values and averaged 0.907, 0.500, and 0.105 ± 0.03 kg/d for HG, LG, and MA, respectively. In addition, body lengths, heart girths, and withers heights were affected by dietary treatment, with MA heifers generally being the smallest and HG heifers generally being the largest. Body condition scores differed by treatment and were highest in HG and lowest in MA heifers; in vivo subcutaneous fat thickness measurement and direct analysis of carcass composition supported this. The HG heifers had the heaviest MFP, followed by LG and then MA heifers. Amount of PAR was highest in LG heifers and was the same for HG and MA heifers. The percentage of udder mass occupied by PAR was lowest in HG heifers, differing from LG and MA heifers. Composition of MFP was not evaluated. Regarding PAR composition, no differences in ash or DM were found. On the other hand, CP concentration of PAR for HG heifers was lower than that for LG heifers, which was lower than that for MA heifers. Regarding the fat content, HG treatment was higher than LG and MA treatment, which did not differ from each other. In PAR, differences in relative abundance of genes related to both stimulation and inhibition of mammary growth were observed to depend on dietary treatment, sampling day, or both. The same can be said for most of the blood hormones that were measured in this experiment. In this experiment, high ADG achieved by feeding different amounts of a standard diet during the growing period negatively affected mammary development.
publishDate 2017
dc.date.issued.fl_str_mv 2017-10
dc.date.accessioned.fl_str_mv 2019-01-31T20:29:14Z
dc.date.available.fl_str_mv 2019-01-31T20:29:14Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://doi.org/10.3168/jds.2016-12489
http://www.locus.ufv.br/handle/123456789/23297
dc.identifier.issn.none.fl_str_mv 0022-0302
identifier_str_mv 0022-0302
url https://doi.org/10.3168/jds.2016-12489
http://www.locus.ufv.br/handle/123456789/23297
dc.language.iso.fl_str_mv por
language por
dc.relation.ispartofseries.pt-BR.fl_str_mv Volume 100, Issue 10, Pages 8033-8042, October 2017
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Journal of Dairy Science
publisher.none.fl_str_mv Journal of Dairy Science
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/23297/1/artigo.pdf
https://locus.ufv.br//bitstream/123456789/23297/2/license.txt
bitstream.checksum.fl_str_mv 0a7d2f30879a8ddd90acc27de37d2e0b
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1801212846491566080