Previsão do teor de lignina em cana-de-açúcar usando espectroscopia no infravermelho próximo e métodos quimiométricos
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | LOCUS Repositório Institucional da UFV |
Texto Completo: | http://www.locus.ufv.br/handle/123456789/7645 |
Resumo: | A construção de modelos de calibração multivariada usando espectroscopia de refletância na região do infravermelho próximo (NIR) e regressão por quadrados mínimos principais (PLS) para estimar teores de lignina de uma série de genótipos de cana-de-açúcar é o objetivo deste trabalho. Análises laboratoriais foram realizadas para determinar os valores de lignina, utilizando o método Klason. As variáveis independentes foram obtidas a partir de diferentes materiais: bagaço seco, bagaço seco com caldo, folha e colmo. Os espectros NIR foram obtidos na faixa de 10000 a 4000 cm-1. O algoritmo Kennard-Stone foi utilizado para selecionar o conjunto calibração e previsão. Os modelos foram construídos empregando a regressão por quadrados mínimos parciais (PLS) e diferentes algoritmos para seleção de variáveis foram testados: iPLS, biPLS, algoritmo Genético (GA) e o método de seleção dos preditores ordenados (OPS). Para o bagaço seco, o melhor modelo foi obtido após seleção de 445 variáveis com o OPS, que obteve RMSEP de 0,85, Rp de 0,97, RPD de 2,87 e erro relativo médio na previsão de 2,82%; para o bagaço seco com caldo o melhor modelo foi obtido após seleção de 265 variáveis com o OPS, que obteve RMSEP de 0,65, Rp de 0,94, RPD de 2,77 e erro relativo médio na previsão de 1,94%; para a folha o melhor modelo foi obtido após seleção de 305 variáveis com o OPS, que obteve RMSEP de 0,58, Rp de 0,96, RPD de 2,56 e erro relativo médio na previsão de 2,47%; para o terço médio do colmo o melhor modelo foi obtido após seleção de 205 variáveis com o OPS, que obteve RMSEP de 0,61, Rp de 0,95, RPD de 3,24 e erro relativo médio na previsão de 1,97%; para o terço superior do colmo o melhor modelo foi obtido após seleção de 300 variáveis com o OPS, que obteve RMSEP de 0,58, Rp de 0,96, RPD de 2,34 e erro relativo médio na previsão de 1,94%; para as partes superiores, inferiores e médias do colmo, o melhor modelo foi obtido após seleção de 250 variáveis com o OPS, que obteve RMSEP de 0,80, Rp de 0,99, RPD de 2,79 e erro relativo médio na previsão de 2,90%. O algoritmo OPS selecionou um menor número de variáveis com maior capacidade preditiva.Todos os modelos mostraram-se confiáveis, com alta exatidão para previsão da lignina em cana-de-açúcar, reduzindo significativamente o tempo para realização das análises e portanto, otimizando o processo como um todo. |
id |
UFV_f2e0a6fa17c787dcf05b9ee622129f44 |
---|---|
oai_identifier_str |
oai:locus.ufv.br:123456789/7645 |
network_acronym_str |
UFV |
network_name_str |
LOCUS Repositório Institucional da UFV |
repository_id_str |
2145 |
spelling |
Barbosa, Márcio Henrique PereiraColodette, Jorge LuizAssis, Camilahttp://lattes.cnpq.br/7643726712512416Teófilo, Reinaldo Francisco2016-05-09T14:57:17Z2016-05-09T14:57:17Z2014-04-05ASSIS, Camila. Previsão do teor de lignina em cana-de-açúcar usando espectroscopia no infravermelho próximo e métodos quimiométricos. 2014. 72f. Dissertação (Mestrado em Agroquímica) - Universidade Federal de Viçosa, Viçosa. 2014.http://www.locus.ufv.br/handle/123456789/7645A construção de modelos de calibração multivariada usando espectroscopia de refletância na região do infravermelho próximo (NIR) e regressão por quadrados mínimos principais (PLS) para estimar teores de lignina de uma série de genótipos de cana-de-açúcar é o objetivo deste trabalho. Análises laboratoriais foram realizadas para determinar os valores de lignina, utilizando o método Klason. As variáveis independentes foram obtidas a partir de diferentes materiais: bagaço seco, bagaço seco com caldo, folha e colmo. Os espectros NIR foram obtidos na faixa de 10000 a 4000 cm-1. O algoritmo Kennard-Stone foi utilizado para selecionar o conjunto calibração e previsão. Os modelos foram construídos empregando a regressão por quadrados mínimos parciais (PLS) e diferentes algoritmos para seleção de variáveis foram testados: iPLS, biPLS, algoritmo Genético (GA) e o método de seleção dos preditores ordenados (OPS). Para o bagaço seco, o melhor modelo foi obtido após seleção de 445 variáveis com o OPS, que obteve RMSEP de 0,85, Rp de 0,97, RPD de 2,87 e erro relativo médio na previsão de 2,82%; para o bagaço seco com caldo o melhor modelo foi obtido após seleção de 265 variáveis com o OPS, que obteve RMSEP de 0,65, Rp de 0,94, RPD de 2,77 e erro relativo médio na previsão de 1,94%; para a folha o melhor modelo foi obtido após seleção de 305 variáveis com o OPS, que obteve RMSEP de 0,58, Rp de 0,96, RPD de 2,56 e erro relativo médio na previsão de 2,47%; para o terço médio do colmo o melhor modelo foi obtido após seleção de 205 variáveis com o OPS, que obteve RMSEP de 0,61, Rp de 0,95, RPD de 3,24 e erro relativo médio na previsão de 1,97%; para o terço superior do colmo o melhor modelo foi obtido após seleção de 300 variáveis com o OPS, que obteve RMSEP de 0,58, Rp de 0,96, RPD de 2,34 e erro relativo médio na previsão de 1,94%; para as partes superiores, inferiores e médias do colmo, o melhor modelo foi obtido após seleção de 250 variáveis com o OPS, que obteve RMSEP de 0,80, Rp de 0,99, RPD de 2,79 e erro relativo médio na previsão de 2,90%. O algoritmo OPS selecionou um menor número de variáveis com maior capacidade preditiva.Todos os modelos mostraram-se confiáveis, com alta exatidão para previsão da lignina em cana-de-açúcar, reduzindo significativamente o tempo para realização das análises e portanto, otimizando o processo como um todo.The building of multivariate calibration models using near infrared spectroscopy (NIR) and partial least squares (PLS) to estimate the lignin content of a number of sugar cane genotypes is the goal of this work. Laboratory analyzes were performed to determine the lignin content using the Klason method. The independent variables were obtained from different materials: dry bagasse, bagasse with broth , leaf and stalk, without any pre-treatment. The NIR spectra were obtained in the range of 10000-4000 cm-1. The Kennard Stone algorithm was used to select the calibration and the prediction set. The models were built using the partial least squares regression (PLS) and different algorithms for variable selection were tested: iPLS, biPLS, Genetic Algorithm (GA) and the Ordered Predictors Selection method (OPS). For dry bagasse, the best model was obtained after screening 445 variables with OPS, which obtained RMSEP of 0,85, Rp 0,97, RPD 2,87 and mean relative error of 2,82%; for bagasse with broth the best model was obtained after screening 265 variables with OPS, which obtained RMSEP of 0,65, Rp 0,94, RPD 2,77 and mean relative error of 1,94%; for leaf the best model was obtained after screening 305 variables with OPS, which obtained RMSEP of 0,58, Rp 0,96, RPD 2,56 and mean relative error of 2,47%; for the middle stalk the best model was obtained after screening 205 variables with OPS, which obtained RMSEP of 0,61, Rp 0,95, RPD 3,24 and mean relative error of 1,97%; for the top stalk the best model was obtained after screening 300 variables with OPS which obtained RMSEP of 0,58, Rp 0,96, RPD 2,34 and mean relative error of 1,94%; for foot middle and top stalk , the best model was obtained after screening 250 variables with OPS, which obtained RMSEP of 0,80, Rp 0,99, RPD 2,79 and mean relative error of 2,90%. The OPS algorithm selected fewer variables with greater predictive capacity. All models are reliable, with high accuracy for predicting lignin in sugar cane, reducing significantly the time to perform the analysis, the cost and the chemical reagents consumption, optimizing the whole process.Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorporUniversidade Federal de ViçosaCana-de-açúcarBiomassaLigninaEspectroscopia de infravermelhoQuímica AnalíticaPrevisão do teor de lignina em cana-de-açúcar usando espectroscopia no infravermelho próximo e métodos quimiométricosPrediction of lignin content in sugar cane using near infrared spectroscopy and chemometrics methodsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisUniversidade Federal de ViçosaDepartamento de QuímicaMestre em AgroquímicaViçosa - MG2014-04-07Mestradoinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALtexto completo.pdftexto completo.pdftexto completoapplication/pdf3001305https://locus.ufv.br//bitstream/123456789/7645/1/texto%20completo.pdfc8654912c4ce446440d6d9a3368108dfMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/7645/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILtexto completo.pdf.jpgtexto completo.pdf.jpgIM Thumbnailimage/jpeg3649https://locus.ufv.br//bitstream/123456789/7645/3/texto%20completo.pdf.jpg5f573e3c3e81f0a4efb7527727b30cb7MD53TEXTtexto completo.pdf.txttexto completo.pdf.txtExtracted texttext/plain139075https://locus.ufv.br//bitstream/123456789/7645/4/texto%20completo.pdf.txt33a1244e027c3216020c1d3fe9598d47MD54123456789/76452016-05-10 07:06:19.263oai:locus.ufv.br:123456789/7645Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452016-05-10T10:06:19LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false |
dc.title.pt-BR.fl_str_mv |
Previsão do teor de lignina em cana-de-açúcar usando espectroscopia no infravermelho próximo e métodos quimiométricos |
dc.title.en.fl_str_mv |
Prediction of lignin content in sugar cane using near infrared spectroscopy and chemometrics methods |
title |
Previsão do teor de lignina em cana-de-açúcar usando espectroscopia no infravermelho próximo e métodos quimiométricos |
spellingShingle |
Previsão do teor de lignina em cana-de-açúcar usando espectroscopia no infravermelho próximo e métodos quimiométricos Assis, Camila Cana-de-açúcar Biomassa Lignina Espectroscopia de infravermelho Química Analítica |
title_short |
Previsão do teor de lignina em cana-de-açúcar usando espectroscopia no infravermelho próximo e métodos quimiométricos |
title_full |
Previsão do teor de lignina em cana-de-açúcar usando espectroscopia no infravermelho próximo e métodos quimiométricos |
title_fullStr |
Previsão do teor de lignina em cana-de-açúcar usando espectroscopia no infravermelho próximo e métodos quimiométricos |
title_full_unstemmed |
Previsão do teor de lignina em cana-de-açúcar usando espectroscopia no infravermelho próximo e métodos quimiométricos |
title_sort |
Previsão do teor de lignina em cana-de-açúcar usando espectroscopia no infravermelho próximo e métodos quimiométricos |
author |
Assis, Camila |
author_facet |
Assis, Camila |
author_role |
author |
dc.contributor.authorLattes.pt-BR.fl_str_mv |
http://lattes.cnpq.br/7643726712512416 |
dc.contributor.none.fl_str_mv |
Barbosa, Márcio Henrique Pereira Colodette, Jorge Luiz |
dc.contributor.author.fl_str_mv |
Assis, Camila |
dc.contributor.advisor1.fl_str_mv |
Teófilo, Reinaldo Francisco |
contributor_str_mv |
Teófilo, Reinaldo Francisco |
dc.subject.pt-BR.fl_str_mv |
Cana-de-açúcar Biomassa Lignina Espectroscopia de infravermelho |
topic |
Cana-de-açúcar Biomassa Lignina Espectroscopia de infravermelho Química Analítica |
dc.subject.cnpq.fl_str_mv |
Química Analítica |
description |
A construção de modelos de calibração multivariada usando espectroscopia de refletância na região do infravermelho próximo (NIR) e regressão por quadrados mínimos principais (PLS) para estimar teores de lignina de uma série de genótipos de cana-de-açúcar é o objetivo deste trabalho. Análises laboratoriais foram realizadas para determinar os valores de lignina, utilizando o método Klason. As variáveis independentes foram obtidas a partir de diferentes materiais: bagaço seco, bagaço seco com caldo, folha e colmo. Os espectros NIR foram obtidos na faixa de 10000 a 4000 cm-1. O algoritmo Kennard-Stone foi utilizado para selecionar o conjunto calibração e previsão. Os modelos foram construídos empregando a regressão por quadrados mínimos parciais (PLS) e diferentes algoritmos para seleção de variáveis foram testados: iPLS, biPLS, algoritmo Genético (GA) e o método de seleção dos preditores ordenados (OPS). Para o bagaço seco, o melhor modelo foi obtido após seleção de 445 variáveis com o OPS, que obteve RMSEP de 0,85, Rp de 0,97, RPD de 2,87 e erro relativo médio na previsão de 2,82%; para o bagaço seco com caldo o melhor modelo foi obtido após seleção de 265 variáveis com o OPS, que obteve RMSEP de 0,65, Rp de 0,94, RPD de 2,77 e erro relativo médio na previsão de 1,94%; para a folha o melhor modelo foi obtido após seleção de 305 variáveis com o OPS, que obteve RMSEP de 0,58, Rp de 0,96, RPD de 2,56 e erro relativo médio na previsão de 2,47%; para o terço médio do colmo o melhor modelo foi obtido após seleção de 205 variáveis com o OPS, que obteve RMSEP de 0,61, Rp de 0,95, RPD de 3,24 e erro relativo médio na previsão de 1,97%; para o terço superior do colmo o melhor modelo foi obtido após seleção de 300 variáveis com o OPS, que obteve RMSEP de 0,58, Rp de 0,96, RPD de 2,34 e erro relativo médio na previsão de 1,94%; para as partes superiores, inferiores e médias do colmo, o melhor modelo foi obtido após seleção de 250 variáveis com o OPS, que obteve RMSEP de 0,80, Rp de 0,99, RPD de 2,79 e erro relativo médio na previsão de 2,90%. O algoritmo OPS selecionou um menor número de variáveis com maior capacidade preditiva.Todos os modelos mostraram-se confiáveis, com alta exatidão para previsão da lignina em cana-de-açúcar, reduzindo significativamente o tempo para realização das análises e portanto, otimizando o processo como um todo. |
publishDate |
2014 |
dc.date.issued.fl_str_mv |
2014-04-05 |
dc.date.accessioned.fl_str_mv |
2016-05-09T14:57:17Z |
dc.date.available.fl_str_mv |
2016-05-09T14:57:17Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
ASSIS, Camila. Previsão do teor de lignina em cana-de-açúcar usando espectroscopia no infravermelho próximo e métodos quimiométricos. 2014. 72f. Dissertação (Mestrado em Agroquímica) - Universidade Federal de Viçosa, Viçosa. 2014. |
dc.identifier.uri.fl_str_mv |
http://www.locus.ufv.br/handle/123456789/7645 |
identifier_str_mv |
ASSIS, Camila. Previsão do teor de lignina em cana-de-açúcar usando espectroscopia no infravermelho próximo e métodos quimiométricos. 2014. 72f. Dissertação (Mestrado em Agroquímica) - Universidade Federal de Viçosa, Viçosa. 2014. |
url |
http://www.locus.ufv.br/handle/123456789/7645 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Viçosa |
publisher.none.fl_str_mv |
Universidade Federal de Viçosa |
dc.source.none.fl_str_mv |
reponame:LOCUS Repositório Institucional da UFV instname:Universidade Federal de Viçosa (UFV) instacron:UFV |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
UFV |
institution |
UFV |
reponame_str |
LOCUS Repositório Institucional da UFV |
collection |
LOCUS Repositório Institucional da UFV |
bitstream.url.fl_str_mv |
https://locus.ufv.br//bitstream/123456789/7645/1/texto%20completo.pdf https://locus.ufv.br//bitstream/123456789/7645/2/license.txt https://locus.ufv.br//bitstream/123456789/7645/3/texto%20completo.pdf.jpg https://locus.ufv.br//bitstream/123456789/7645/4/texto%20completo.pdf.txt |
bitstream.checksum.fl_str_mv |
c8654912c4ce446440d6d9a3368108df 8a4605be74aa9ea9d79846c1fba20a33 5f573e3c3e81f0a4efb7527727b30cb7 33a1244e027c3216020c1d3fe9598d47 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
fabiojreis@ufv.br |
_version_ |
1801212907962236928 |