Active layer thermal monitoring of a Dry Valley of the Ellsworth Mountains, Continental Antarctica

Detalhes bibliográficos
Autor(a) principal: Schaefer, Carlos Ernesto G.R.
Data de Publicação: 2017
Outros Autores: Delpupo, Caroline, Senra, Eduardo O., Michel, Roberto F.M., Bremer, Ulisses F., Bockheim, James G.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: https://doi.org/10.1016/j.catena.2016.07.020
http://www.locus.ufv.br/handle/123456789/21660
Resumo: The Ellsworth Mountains are located along the southern edge of the Ronne-Filchner Ice Shelf and are subdivided by the Minnesota Glacier into the Heritage Range to the east, and the Sentinel Range to the west (Figure 1). The climate of the Ellsworth Mountains is strongly controlled by proximity to the Ronne-Filchner Ice Shelf and elevation. The entire ice free area is underlain by continuous permafrost of unknown thickness, most in the form of dry permafrost. Active-layer depths in drift sheets of the Ellsworth Mountains range from 15 to 50 cm. Detailed knowledge on Antarctic permafrost is patchy, especially at the continent. Two adjacent active layer monitoring sites were installed at Mt. Dolence, Ellsworth Mountains, in the summer of 2012. Two dry-valley soils at Mt. Dolence area, on quartzite drift deposits were studied: (i) a convex-slope site exposed to the wind (Lithic Haplorthel 886 m asl, 5 cm, 10 cm, 30 cm); and a sheltered concave-slope site protected from winds (Lithic Anhyorthel 850 m asl, 5 cm, 10 cm, 30 cm). Data was recorded at hourly intervals from January 2nd 2012 until December 29th 2013. The soil climate temperature at 5 cm reaches a maximum daily mean in late December, reaching a minimum in mid July at both sites. Active layer thickness reaches a maximum of 48.4 cm at P1 on January 17th 2013 and 47.8 cm at P2 on January 7th 2012. The soil thermal regime at the dry valley of Mt. Dolence, Ellsworth Mountains is characteristic of cold desert affected by dry-frozen permafrost. Although air temperature does not reach elevated positive values, variations in soil temperature are intense, showing the soil's response to solar radiation. The origins of typical surface periglacial features and landform on the widespread Ellsworth drifts may be inherited from past events of warmer climates, since liquid water is unlikely to play any significant role under the present climate.
id UFV_f672a2f02e71ea1ffa694f686a5a45c3
oai_identifier_str oai:locus.ufv.br:123456789/21660
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Schaefer, Carlos Ernesto G.R.Delpupo, CarolineSenra, Eduardo O.Michel, Roberto F.M.Bremer, Ulisses F.Bockheim, James G.2018-09-06T10:49:34Z2018-09-06T10:49:34Z2017-020341-8162https://doi.org/10.1016/j.catena.2016.07.020http://www.locus.ufv.br/handle/123456789/21660The Ellsworth Mountains are located along the southern edge of the Ronne-Filchner Ice Shelf and are subdivided by the Minnesota Glacier into the Heritage Range to the east, and the Sentinel Range to the west (Figure 1). The climate of the Ellsworth Mountains is strongly controlled by proximity to the Ronne-Filchner Ice Shelf and elevation. The entire ice free area is underlain by continuous permafrost of unknown thickness, most in the form of dry permafrost. Active-layer depths in drift sheets of the Ellsworth Mountains range from 15 to 50 cm. Detailed knowledge on Antarctic permafrost is patchy, especially at the continent. Two adjacent active layer monitoring sites were installed at Mt. Dolence, Ellsworth Mountains, in the summer of 2012. Two dry-valley soils at Mt. Dolence area, on quartzite drift deposits were studied: (i) a convex-slope site exposed to the wind (Lithic Haplorthel 886 m asl, 5 cm, 10 cm, 30 cm); and a sheltered concave-slope site protected from winds (Lithic Anhyorthel 850 m asl, 5 cm, 10 cm, 30 cm). Data was recorded at hourly intervals from January 2nd 2012 until December 29th 2013. The soil climate temperature at 5 cm reaches a maximum daily mean in late December, reaching a minimum in mid July at both sites. Active layer thickness reaches a maximum of 48.4 cm at P1 on January 17th 2013 and 47.8 cm at P2 on January 7th 2012. The soil thermal regime at the dry valley of Mt. Dolence, Ellsworth Mountains is characteristic of cold desert affected by dry-frozen permafrost. Although air temperature does not reach elevated positive values, variations in soil temperature are intense, showing the soil's response to solar radiation. The origins of typical surface periglacial features and landform on the widespread Ellsworth drifts may be inherited from past events of warmer climates, since liquid water is unlikely to play any significant role under the present climate.engCATENAVolume 149, Part 2, Pages 603-615, February 2017Elsevier B.V.info:eu-repo/semantics/openAccessActive layerDry ValleyEllsworth MountainsContinental AntarcticaActive layer thermal monitoring of a Dry Valley of the Ellsworth Mountains, Continental Antarcticainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALartigo.pdfartigo.pdfTexto completoapplication/pdf4110818https://locus.ufv.br//bitstream/123456789/21660/1/artigo.pdf6c21ecc446418b4b40780b4de91f794eMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/21660/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILartigo.pdf.jpgartigo.pdf.jpgIM Thumbnailimage/jpeg6268https://locus.ufv.br//bitstream/123456789/21660/3/artigo.pdf.jpgdd42531f5027d52c7d960fdd1b6732f2MD53123456789/216602018-09-06 23:00:44.157oai:locus.ufv.br:123456789/21660Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452018-09-07T02:00:44LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.en.fl_str_mv Active layer thermal monitoring of a Dry Valley of the Ellsworth Mountains, Continental Antarctica
title Active layer thermal monitoring of a Dry Valley of the Ellsworth Mountains, Continental Antarctica
spellingShingle Active layer thermal monitoring of a Dry Valley of the Ellsworth Mountains, Continental Antarctica
Schaefer, Carlos Ernesto G.R.
Active layer
Dry Valley
Ellsworth Mountains
Continental Antarctica
title_short Active layer thermal monitoring of a Dry Valley of the Ellsworth Mountains, Continental Antarctica
title_full Active layer thermal monitoring of a Dry Valley of the Ellsworth Mountains, Continental Antarctica
title_fullStr Active layer thermal monitoring of a Dry Valley of the Ellsworth Mountains, Continental Antarctica
title_full_unstemmed Active layer thermal monitoring of a Dry Valley of the Ellsworth Mountains, Continental Antarctica
title_sort Active layer thermal monitoring of a Dry Valley of the Ellsworth Mountains, Continental Antarctica
author Schaefer, Carlos Ernesto G.R.
author_facet Schaefer, Carlos Ernesto G.R.
Delpupo, Caroline
Senra, Eduardo O.
Michel, Roberto F.M.
Bremer, Ulisses F.
Bockheim, James G.
author_role author
author2 Delpupo, Caroline
Senra, Eduardo O.
Michel, Roberto F.M.
Bremer, Ulisses F.
Bockheim, James G.
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Schaefer, Carlos Ernesto G.R.
Delpupo, Caroline
Senra, Eduardo O.
Michel, Roberto F.M.
Bremer, Ulisses F.
Bockheim, James G.
dc.subject.pt-BR.fl_str_mv Active layer
Dry Valley
Ellsworth Mountains
Continental Antarctica
topic Active layer
Dry Valley
Ellsworth Mountains
Continental Antarctica
description The Ellsworth Mountains are located along the southern edge of the Ronne-Filchner Ice Shelf and are subdivided by the Minnesota Glacier into the Heritage Range to the east, and the Sentinel Range to the west (Figure 1). The climate of the Ellsworth Mountains is strongly controlled by proximity to the Ronne-Filchner Ice Shelf and elevation. The entire ice free area is underlain by continuous permafrost of unknown thickness, most in the form of dry permafrost. Active-layer depths in drift sheets of the Ellsworth Mountains range from 15 to 50 cm. Detailed knowledge on Antarctic permafrost is patchy, especially at the continent. Two adjacent active layer monitoring sites were installed at Mt. Dolence, Ellsworth Mountains, in the summer of 2012. Two dry-valley soils at Mt. Dolence area, on quartzite drift deposits were studied: (i) a convex-slope site exposed to the wind (Lithic Haplorthel 886 m asl, 5 cm, 10 cm, 30 cm); and a sheltered concave-slope site protected from winds (Lithic Anhyorthel 850 m asl, 5 cm, 10 cm, 30 cm). Data was recorded at hourly intervals from January 2nd 2012 until December 29th 2013. The soil climate temperature at 5 cm reaches a maximum daily mean in late December, reaching a minimum in mid July at both sites. Active layer thickness reaches a maximum of 48.4 cm at P1 on January 17th 2013 and 47.8 cm at P2 on January 7th 2012. The soil thermal regime at the dry valley of Mt. Dolence, Ellsworth Mountains is characteristic of cold desert affected by dry-frozen permafrost. Although air temperature does not reach elevated positive values, variations in soil temperature are intense, showing the soil's response to solar radiation. The origins of typical surface periglacial features and landform on the widespread Ellsworth drifts may be inherited from past events of warmer climates, since liquid water is unlikely to play any significant role under the present climate.
publishDate 2017
dc.date.issued.fl_str_mv 2017-02
dc.date.accessioned.fl_str_mv 2018-09-06T10:49:34Z
dc.date.available.fl_str_mv 2018-09-06T10:49:34Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://doi.org/10.1016/j.catena.2016.07.020
http://www.locus.ufv.br/handle/123456789/21660
dc.identifier.issn.none.fl_str_mv 0341-8162
identifier_str_mv 0341-8162
url https://doi.org/10.1016/j.catena.2016.07.020
http://www.locus.ufv.br/handle/123456789/21660
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartofseries.pt-BR.fl_str_mv Volume 149, Part 2, Pages 603-615, February 2017
dc.rights.driver.fl_str_mv Elsevier B.V.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Elsevier B.V.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv CATENA
publisher.none.fl_str_mv CATENA
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/21660/1/artigo.pdf
https://locus.ufv.br//bitstream/123456789/21660/2/license.txt
https://locus.ufv.br//bitstream/123456789/21660/3/artigo.pdf.jpg
bitstream.checksum.fl_str_mv 6c21ecc446418b4b40780b4de91f794e
8a4605be74aa9ea9d79846c1fba20a33
dd42531f5027d52c7d960fdd1b6732f2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1801213068422676480