Selection in sugarcane families with artificial neural networks

Detalhes bibliográficos
Autor(a) principal: Brasileiro, Bruno Portela
Data de Publicação: 2014
Outros Autores: Marinho, Caillet Dornelles, Costa, Paulo Mafra de Almeida, Cruz, Cosme Damião, Peternelli, Luiz Alexandre, Barbosa, Márcio Henrique Pereira
Tipo de documento: Artigo
Idioma: eng
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: http://dx.doi.org/10.1590/1984-70332015v15n2a14
http://www.locus.ufv.br/handle/123456789/17553
Resumo: O objetivo desse trabalho foi avaliar o uso de Redes Neurais Artificiais (RNA) na seleção dentro de famílias de cana-de-açúcar. O melhor modelo de RNA não apresentou erro, sendo capaz de classificar corretamente todos os genótipos, ou seja, a rede tomou a mesma decisão de seleção realizada pelo melhorista durante a aplicação do BLUP individual simulado (BLUPIS), demonstrando a capacidade de aprendizado da RNA a partir das entradas e saídas informadas nas fases de treinamento e validação. Tendo em vista que a seleção via RNA facilita a identificação dos melhores indivíduos e visando desenvolver uma nova estratégia de seleção dentro das melhores famílias, de forma a garantir que os melhores genótipos da população sejam avaliados nas próximas fases do programa de melhoramento, recomendamos, ranquear as famílias via BLUP, selecionar as melhores e realizar a seleção individual via RNA, a partir das informações coletadas em nível individual nas melhores famílias.
id UFV_f6b746f557946cbb4d108d8ea14764f6
oai_identifier_str oai:locus.ufv.br:123456789/17553
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Brasileiro, Bruno PortelaMarinho, Caillet DornellesCosta, Paulo Mafra de AlmeidaCruz, Cosme DamiãoPeternelli, Luiz AlexandreBarbosa, Márcio Henrique Pereira2018-02-14T15:59:07Z2018-02-14T15:59:07Z2014-11-071984-7033http://dx.doi.org/10.1590/1984-70332015v15n2a14http://www.locus.ufv.br/handle/123456789/17553O objetivo desse trabalho foi avaliar o uso de Redes Neurais Artificiais (RNA) na seleção dentro de famílias de cana-de-açúcar. O melhor modelo de RNA não apresentou erro, sendo capaz de classificar corretamente todos os genótipos, ou seja, a rede tomou a mesma decisão de seleção realizada pelo melhorista durante a aplicação do BLUP individual simulado (BLUPIS), demonstrando a capacidade de aprendizado da RNA a partir das entradas e saídas informadas nas fases de treinamento e validação. Tendo em vista que a seleção via RNA facilita a identificação dos melhores indivíduos e visando desenvolver uma nova estratégia de seleção dentro das melhores famílias, de forma a garantir que os melhores genótipos da população sejam avaliados nas próximas fases do programa de melhoramento, recomendamos, ranquear as famílias via BLUP, selecionar as melhores e realizar a seleção individual via RNA, a partir das informações coletadas em nível individual nas melhores famílias.The objective of this study was to evaluate Artificial Neural Networks (ANN) applied in an selection process within sugarcane families. The best ANN model produced no mistake, but was able to classify all genotypes correctly, i.e., the network made the same selective choice as the breeder during the simulation individual best linear unbiased predictor (BLUPIS), demonstrating the ability of the ANN to learn from the inputs and outputs provided in the training and validation phases. Since the ANN-based selection facilitates the identification of the best plants and the development of a new selection strategy in the best families, to ensure that the best genotypes of the population are evaluated in the following stages of the breeding program, we recommend to rank families by BLUP, followed by selection of the best families and finally, select the seedlings by ANN, from information at the individual level in the best familiesengCrop Breeding and Applied Biotechnologyv.15, n. 2, p. 72-78, Apr./June 2015Saccharum sppArtificial intelligence and breedingSelection in sugarcane families with artificial neural networksinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALartigo.pdfartigo.pdfTexto completoapplication/pdf501100https://locus.ufv.br//bitstream/123456789/17553/1/artigo.pdf5f2a5c8848e36496cc41c1be2364a52dMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/17553/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILartigo.pdf.jpgartigo.pdf.jpgIM Thumbnailimage/jpeg4845https://locus.ufv.br//bitstream/123456789/17553/3/artigo.pdf.jpg3d3fa6b292c501cb531cb98ad5e2739fMD53123456789/175532018-02-14 22:00:34.459oai:locus.ufv.br:123456789/17553Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452018-02-15T01:00:34LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.en.fl_str_mv Selection in sugarcane families with artificial neural networks
title Selection in sugarcane families with artificial neural networks
spellingShingle Selection in sugarcane families with artificial neural networks
Brasileiro, Bruno Portela
Saccharum spp
Artificial intelligence and breeding
title_short Selection in sugarcane families with artificial neural networks
title_full Selection in sugarcane families with artificial neural networks
title_fullStr Selection in sugarcane families with artificial neural networks
title_full_unstemmed Selection in sugarcane families with artificial neural networks
title_sort Selection in sugarcane families with artificial neural networks
author Brasileiro, Bruno Portela
author_facet Brasileiro, Bruno Portela
Marinho, Caillet Dornelles
Costa, Paulo Mafra de Almeida
Cruz, Cosme Damião
Peternelli, Luiz Alexandre
Barbosa, Márcio Henrique Pereira
author_role author
author2 Marinho, Caillet Dornelles
Costa, Paulo Mafra de Almeida
Cruz, Cosme Damião
Peternelli, Luiz Alexandre
Barbosa, Márcio Henrique Pereira
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Brasileiro, Bruno Portela
Marinho, Caillet Dornelles
Costa, Paulo Mafra de Almeida
Cruz, Cosme Damião
Peternelli, Luiz Alexandre
Barbosa, Márcio Henrique Pereira
dc.subject.pt-BR.fl_str_mv Saccharum spp
Artificial intelligence and breeding
topic Saccharum spp
Artificial intelligence and breeding
description O objetivo desse trabalho foi avaliar o uso de Redes Neurais Artificiais (RNA) na seleção dentro de famílias de cana-de-açúcar. O melhor modelo de RNA não apresentou erro, sendo capaz de classificar corretamente todos os genótipos, ou seja, a rede tomou a mesma decisão de seleção realizada pelo melhorista durante a aplicação do BLUP individual simulado (BLUPIS), demonstrando a capacidade de aprendizado da RNA a partir das entradas e saídas informadas nas fases de treinamento e validação. Tendo em vista que a seleção via RNA facilita a identificação dos melhores indivíduos e visando desenvolver uma nova estratégia de seleção dentro das melhores famílias, de forma a garantir que os melhores genótipos da população sejam avaliados nas próximas fases do programa de melhoramento, recomendamos, ranquear as famílias via BLUP, selecionar as melhores e realizar a seleção individual via RNA, a partir das informações coletadas em nível individual nas melhores famílias.
publishDate 2014
dc.date.issued.fl_str_mv 2014-11-07
dc.date.accessioned.fl_str_mv 2018-02-14T15:59:07Z
dc.date.available.fl_str_mv 2018-02-14T15:59:07Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1590/1984-70332015v15n2a14
http://www.locus.ufv.br/handle/123456789/17553
dc.identifier.issn.none.fl_str_mv 1984-7033
identifier_str_mv 1984-7033
url http://dx.doi.org/10.1590/1984-70332015v15n2a14
http://www.locus.ufv.br/handle/123456789/17553
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartofseries.pt-BR.fl_str_mv v.15, n. 2, p. 72-78, Apr./June 2015
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Crop Breeding and Applied Biotechnology
publisher.none.fl_str_mv Crop Breeding and Applied Biotechnology
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/17553/1/artigo.pdf
https://locus.ufv.br//bitstream/123456789/17553/2/license.txt
https://locus.ufv.br//bitstream/123456789/17553/3/artigo.pdf.jpg
bitstream.checksum.fl_str_mv 5f2a5c8848e36496cc41c1be2364a52d
8a4605be74aa9ea9d79846c1fba20a33
3d3fa6b292c501cb531cb98ad5e2739f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1801212876175704064