Genetic diversity and interfertility among highly differentiated populations of Ceratocystis fimbriata in Brazil

Detalhes bibliográficos
Autor(a) principal: Ferreira, E. M.
Data de Publicação: 2010
Outros Autores: Harrington, T. C., Thorpe, D. J., Alfenas, A. C.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: http://dx.doi.org/10.1111/j.1365-3059.2010.02275.x
http://www.locus.ufv.br/handle/123456789/22086
Resumo: Mating studies showed that isolates of the insect-associated wilt pathogen Ceratocystis fimbriata from Eucalyptus spp., mango, fig, inhame (Colocasia esculenta), Gmelina arborea and sweet potato were interfertile, and progeny from those crosses showed normal segregation for microsatellite markers. Genetic diversity was compared among 13 populations of C. fimbriata collected from six states in Brazil using 15 highly polymorphic microsatellite markers. The gene diversity values of most eucalyptus and mango populations from Minas Gerais, Bahia, Rio de Janeiro and São Paulo states were similar to putatively native populations of Ceratocystis platani and C. cacaofunesta, two other species in the C. fimbriata complex that are homothallic. Index of association values indicated substantial asexual reproduction or selfing in populations on mango and eucalyptus. Most of these eucalyptus and mango populations were not highly differentiated from each other, and these populations and genotypes appeared to be more closely related to each other than to other populations by UPGMA analyses. By contrast, the G. arborea population from Pará and the fig and inhame populations from São Paulo had relatively low lev- els of diversity and were highly differentiated from each other and all other studied populations, suggesting that they were from different origins and had gone through genetic bottlenecks. One of the eucalyptus populations in Bahia consisted of a single genotype and may have been introduced to the site in infected cuttings from another Bahia location. Similarly, a mango population from Mato Grosso do Sul consisted of a single genotype, which was identical to one of the genotypes found on mango in São Paulo. Aside from introductions by humans, mating studies and genetic analyses suggest that limited dispersal distance and a high degree of selfing or asexual reproduction lead to local populations of C. fimbriata that have limited diversity but are highly differentiated from other populations.
id UFV_f9085c38d0851ae5cb8f7f4fc5b14cab
oai_identifier_str oai:locus.ufv.br:123456789/22086
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Ferreira, E. M.Harrington, T. C.Thorpe, D. J.Alfenas, A. C.2018-10-01T11:52:45Z2018-10-01T11:52:45Z2010-07-0113653059http://dx.doi.org/10.1111/j.1365-3059.2010.02275.xhttp://www.locus.ufv.br/handle/123456789/22086Mating studies showed that isolates of the insect-associated wilt pathogen Ceratocystis fimbriata from Eucalyptus spp., mango, fig, inhame (Colocasia esculenta), Gmelina arborea and sweet potato were interfertile, and progeny from those crosses showed normal segregation for microsatellite markers. Genetic diversity was compared among 13 populations of C. fimbriata collected from six states in Brazil using 15 highly polymorphic microsatellite markers. The gene diversity values of most eucalyptus and mango populations from Minas Gerais, Bahia, Rio de Janeiro and São Paulo states were similar to putatively native populations of Ceratocystis platani and C. cacaofunesta, two other species in the C. fimbriata complex that are homothallic. Index of association values indicated substantial asexual reproduction or selfing in populations on mango and eucalyptus. Most of these eucalyptus and mango populations were not highly differentiated from each other, and these populations and genotypes appeared to be more closely related to each other than to other populations by UPGMA analyses. By contrast, the G. arborea population from Pará and the fig and inhame populations from São Paulo had relatively low lev- els of diversity and were highly differentiated from each other and all other studied populations, suggesting that they were from different origins and had gone through genetic bottlenecks. One of the eucalyptus populations in Bahia consisted of a single genotype and may have been introduced to the site in infected cuttings from another Bahia location. Similarly, a mango population from Mato Grosso do Sul consisted of a single genotype, which was identical to one of the genotypes found on mango in São Paulo. Aside from introductions by humans, mating studies and genetic analyses suggest that limited dispersal distance and a high degree of selfing or asexual reproduction lead to local populations of C. fimbriata that have limited diversity but are highly differentiated from other populations.engPlant Pathologyv. 59, n. 4, p. 721- 735, ago. 2010Ceratocystis wiltEucalyptusGenetic diversityIntroduced populationsMangoPopulation geneticsGenetic diversity and interfertility among highly differentiated populations of Ceratocystis fimbriata in Brazilinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALartigo.pdfartigo.pdftexto completoapplication/pdf352527https://locus.ufv.br//bitstream/123456789/22086/1/artigo.pdff908d7e5e828cc9811ba5b62168c07afMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/22086/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILartigo.pdf.jpgartigo.pdf.jpgIM Thumbnailimage/jpeg4667https://locus.ufv.br//bitstream/123456789/22086/3/artigo.pdf.jpg0e86495baf8cce2a4c47ea3157be1d3eMD53123456789/220862018-10-01 23:00:33.092oai:locus.ufv.br:123456789/22086Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452018-10-02T02:00:33LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.en.fl_str_mv Genetic diversity and interfertility among highly differentiated populations of Ceratocystis fimbriata in Brazil
title Genetic diversity and interfertility among highly differentiated populations of Ceratocystis fimbriata in Brazil
spellingShingle Genetic diversity and interfertility among highly differentiated populations of Ceratocystis fimbriata in Brazil
Ferreira, E. M.
Ceratocystis wilt
Eucalyptus
Genetic diversity
Introduced populations
Mango
Population genetics
title_short Genetic diversity and interfertility among highly differentiated populations of Ceratocystis fimbriata in Brazil
title_full Genetic diversity and interfertility among highly differentiated populations of Ceratocystis fimbriata in Brazil
title_fullStr Genetic diversity and interfertility among highly differentiated populations of Ceratocystis fimbriata in Brazil
title_full_unstemmed Genetic diversity and interfertility among highly differentiated populations of Ceratocystis fimbriata in Brazil
title_sort Genetic diversity and interfertility among highly differentiated populations of Ceratocystis fimbriata in Brazil
author Ferreira, E. M.
author_facet Ferreira, E. M.
Harrington, T. C.
Thorpe, D. J.
Alfenas, A. C.
author_role author
author2 Harrington, T. C.
Thorpe, D. J.
Alfenas, A. C.
author2_role author
author
author
dc.contributor.author.fl_str_mv Ferreira, E. M.
Harrington, T. C.
Thorpe, D. J.
Alfenas, A. C.
dc.subject.pt-BR.fl_str_mv Ceratocystis wilt
Eucalyptus
Genetic diversity
Introduced populations
Mango
Population genetics
topic Ceratocystis wilt
Eucalyptus
Genetic diversity
Introduced populations
Mango
Population genetics
description Mating studies showed that isolates of the insect-associated wilt pathogen Ceratocystis fimbriata from Eucalyptus spp., mango, fig, inhame (Colocasia esculenta), Gmelina arborea and sweet potato were interfertile, and progeny from those crosses showed normal segregation for microsatellite markers. Genetic diversity was compared among 13 populations of C. fimbriata collected from six states in Brazil using 15 highly polymorphic microsatellite markers. The gene diversity values of most eucalyptus and mango populations from Minas Gerais, Bahia, Rio de Janeiro and São Paulo states were similar to putatively native populations of Ceratocystis platani and C. cacaofunesta, two other species in the C. fimbriata complex that are homothallic. Index of association values indicated substantial asexual reproduction or selfing in populations on mango and eucalyptus. Most of these eucalyptus and mango populations were not highly differentiated from each other, and these populations and genotypes appeared to be more closely related to each other than to other populations by UPGMA analyses. By contrast, the G. arborea population from Pará and the fig and inhame populations from São Paulo had relatively low lev- els of diversity and were highly differentiated from each other and all other studied populations, suggesting that they were from different origins and had gone through genetic bottlenecks. One of the eucalyptus populations in Bahia consisted of a single genotype and may have been introduced to the site in infected cuttings from another Bahia location. Similarly, a mango population from Mato Grosso do Sul consisted of a single genotype, which was identical to one of the genotypes found on mango in São Paulo. Aside from introductions by humans, mating studies and genetic analyses suggest that limited dispersal distance and a high degree of selfing or asexual reproduction lead to local populations of C. fimbriata that have limited diversity but are highly differentiated from other populations.
publishDate 2010
dc.date.issued.fl_str_mv 2010-07-01
dc.date.accessioned.fl_str_mv 2018-10-01T11:52:45Z
dc.date.available.fl_str_mv 2018-10-01T11:52:45Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1111/j.1365-3059.2010.02275.x
http://www.locus.ufv.br/handle/123456789/22086
dc.identifier.issn.none.fl_str_mv 13653059
identifier_str_mv 13653059
url http://dx.doi.org/10.1111/j.1365-3059.2010.02275.x
http://www.locus.ufv.br/handle/123456789/22086
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartofseries.pt-BR.fl_str_mv v. 59, n. 4, p. 721- 735, ago. 2010
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Plant Pathology
publisher.none.fl_str_mv Plant Pathology
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/22086/1/artigo.pdf
https://locus.ufv.br//bitstream/123456789/22086/2/license.txt
https://locus.ufv.br//bitstream/123456789/22086/3/artigo.pdf.jpg
bitstream.checksum.fl_str_mv f908d7e5e828cc9811ba5b62168c07af
8a4605be74aa9ea9d79846c1fba20a33
0e86495baf8cce2a4c47ea3157be1d3e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1801212863674580992