ASSESSMENT OF TWO DISCRETIZATION SCHEMES FOR HEAT CONDUCTION AND PHASE CHANGE MODELING

Detalhes bibliográficos
Autor(a) principal: Ramis, Jacqueline Elhage
Data de Publicação: 2017
Outros Autores: Queiroz, Paulo Ivo Braga de, Lucena Neto, Eliseu, Azevedo, Alex Guimarães de, Hemsi, Paulo Scarano
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista Interdisciplinar de Pesquisa em Engenharia
Texto Completo: https://periodicos.unb.br/index.php/ripe/article/view/21341
Resumo: Heat conduction and phase change problems are discretized in space by means of finite elements based on Ritz and collocation methods, while the time discretization stems from a fully implicit scheme. These formulations have their performances assessed by comparing the numerical results with the exact solutions of problems in semi-infinite media, either in pure diffusion without phase change - one-phase Stefan problem - or in conduction with phase change - two-phase Stefan problem. Convergence analyses reveal that the Ritz method is better suited to one-phase Stefan problem, while the two-phase Stefan problem is better treated by the collocation method.
id UNB-19_3706bbe02e4045419c328fd4e7a778e9
oai_identifier_str oai:ojs.pkp.sfu.ca:article/21341
network_acronym_str UNB-19
network_name_str Revista Interdisciplinar de Pesquisa em Engenharia
repository_id_str
spelling ASSESSMENT OF TWO DISCRETIZATION SCHEMES FOR HEAT CONDUCTION AND PHASE CHANGE MODELINGConvergence. Eigenvalue bound. Finite element. Heat conduction.Heat conduction and phase change problems are discretized in space by means of finite elements based on Ritz and collocation methods, while the time discretization stems from a fully implicit scheme. These formulations have their performances assessed by comparing the numerical results with the exact solutions of problems in semi-infinite media, either in pure diffusion without phase change - one-phase Stefan problem - or in conduction with phase change - two-phase Stefan problem. Convergence analyses reveal that the Ritz method is better suited to one-phase Stefan problem, while the two-phase Stefan problem is better treated by the collocation method.Programa de Pós-Graduação em Integridade de Materiais da Engenharia2017-01-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.unb.br/index.php/ripe/article/view/2134110.26512/ripe.v2i12.21341Revista Interdisciplinar de Pesquisa em Engenharia; Vol. 2 No. 12 (2016): COMPUTATIONAL THERMAL SCIENCES; 11-23Revista Interdisciplinar de Pesquisa em Engenharia; v. 2 n. 12 (2016): COMPUTATIONAL THERMAL SCIENCES; 11-232447-6102reponame:Revista Interdisciplinar de Pesquisa em Engenhariainstname:Universidade de Brasília (UnB)instacron:UNBenghttps://periodicos.unb.br/index.php/ripe/article/view/21341/19683Copyright (c) 2018 Revista Interdisciplinar de Pesquisa em Engenharia - RIPEinfo:eu-repo/semantics/openAccessRamis, Jacqueline ElhageQueiroz, Paulo Ivo Braga deLucena Neto, EliseuAzevedo, Alex Guimarães deHemsi, Paulo Scarano2019-06-11T13:28:16Zoai:ojs.pkp.sfu.ca:article/21341Revistahttps://periodicos.unb.br/index.php/ripePUBhttps://periodicos.unb.br/index.php/ripe/oaianflor@unb.br2447-61022447-6102opendoar:2019-06-11T13:28:16Revista Interdisciplinar de Pesquisa em Engenharia - Universidade de Brasília (UnB)false
dc.title.none.fl_str_mv ASSESSMENT OF TWO DISCRETIZATION SCHEMES FOR HEAT CONDUCTION AND PHASE CHANGE MODELING
title ASSESSMENT OF TWO DISCRETIZATION SCHEMES FOR HEAT CONDUCTION AND PHASE CHANGE MODELING
spellingShingle ASSESSMENT OF TWO DISCRETIZATION SCHEMES FOR HEAT CONDUCTION AND PHASE CHANGE MODELING
Ramis, Jacqueline Elhage
Convergence. Eigenvalue bound. Finite element. Heat conduction.
title_short ASSESSMENT OF TWO DISCRETIZATION SCHEMES FOR HEAT CONDUCTION AND PHASE CHANGE MODELING
title_full ASSESSMENT OF TWO DISCRETIZATION SCHEMES FOR HEAT CONDUCTION AND PHASE CHANGE MODELING
title_fullStr ASSESSMENT OF TWO DISCRETIZATION SCHEMES FOR HEAT CONDUCTION AND PHASE CHANGE MODELING
title_full_unstemmed ASSESSMENT OF TWO DISCRETIZATION SCHEMES FOR HEAT CONDUCTION AND PHASE CHANGE MODELING
title_sort ASSESSMENT OF TWO DISCRETIZATION SCHEMES FOR HEAT CONDUCTION AND PHASE CHANGE MODELING
author Ramis, Jacqueline Elhage
author_facet Ramis, Jacqueline Elhage
Queiroz, Paulo Ivo Braga de
Lucena Neto, Eliseu
Azevedo, Alex Guimarães de
Hemsi, Paulo Scarano
author_role author
author2 Queiroz, Paulo Ivo Braga de
Lucena Neto, Eliseu
Azevedo, Alex Guimarães de
Hemsi, Paulo Scarano
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Ramis, Jacqueline Elhage
Queiroz, Paulo Ivo Braga de
Lucena Neto, Eliseu
Azevedo, Alex Guimarães de
Hemsi, Paulo Scarano
dc.subject.por.fl_str_mv Convergence. Eigenvalue bound. Finite element. Heat conduction.
topic Convergence. Eigenvalue bound. Finite element. Heat conduction.
description Heat conduction and phase change problems are discretized in space by means of finite elements based on Ritz and collocation methods, while the time discretization stems from a fully implicit scheme. These formulations have their performances assessed by comparing the numerical results with the exact solutions of problems in semi-infinite media, either in pure diffusion without phase change - one-phase Stefan problem - or in conduction with phase change - two-phase Stefan problem. Convergence analyses reveal that the Ritz method is better suited to one-phase Stefan problem, while the two-phase Stefan problem is better treated by the collocation method.
publishDate 2017
dc.date.none.fl_str_mv 2017-01-10
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicos.unb.br/index.php/ripe/article/view/21341
10.26512/ripe.v2i12.21341
url https://periodicos.unb.br/index.php/ripe/article/view/21341
identifier_str_mv 10.26512/ripe.v2i12.21341
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://periodicos.unb.br/index.php/ripe/article/view/21341/19683
dc.rights.driver.fl_str_mv Copyright (c) 2018 Revista Interdisciplinar de Pesquisa em Engenharia - RIPE
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2018 Revista Interdisciplinar de Pesquisa em Engenharia - RIPE
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Programa de Pós-Graduação em Integridade de Materiais da Engenharia
publisher.none.fl_str_mv Programa de Pós-Graduação em Integridade de Materiais da Engenharia
dc.source.none.fl_str_mv Revista Interdisciplinar de Pesquisa em Engenharia; Vol. 2 No. 12 (2016): COMPUTATIONAL THERMAL SCIENCES; 11-23
Revista Interdisciplinar de Pesquisa em Engenharia; v. 2 n. 12 (2016): COMPUTATIONAL THERMAL SCIENCES; 11-23
2447-6102
reponame:Revista Interdisciplinar de Pesquisa em Engenharia
instname:Universidade de Brasília (UnB)
instacron:UNB
instname_str Universidade de Brasília (UnB)
instacron_str UNB
institution UNB
reponame_str Revista Interdisciplinar de Pesquisa em Engenharia
collection Revista Interdisciplinar de Pesquisa em Engenharia
repository.name.fl_str_mv Revista Interdisciplinar de Pesquisa em Engenharia - Universidade de Brasília (UnB)
repository.mail.fl_str_mv anflor@unb.br
_version_ 1798315225777176576