U-NET APPLIED TO BONE SEGMENTATION ON COMPUTED MICROTOMOGRAPHIES OBTAINED BY SYNCHROTRON RADIATION FOR HISTOMORPHOMETRIC ANALYSES

Detalhes bibliográficos
Autor(a) principal: Souza Premoli Pinto de Oliveira, Vitor
Data de Publicação: 2023
Outros Autores: Destefani Stefanato, Eduardo, Jorge Gomes Pinheiro, Christiano, Cély Rodrigues Barroso, Regina, Alvarenga de Moura Meneses, Anderson
Tipo de documento: Artigo
Idioma: por
Título da fonte: Revista Interdisciplinar de Pesquisa em Engenharia
Texto Completo: https://periodicos.unb.br/index.php/ripe/article/view/46854
Resumo: Actually, artificial intelligence (AI) participates increasingly in the elaboration of biomedical diagnoses. Clinical applications have used deep learning (DP) methods in the segmentation process, helping in the early treatment of diseases. Based on this principle, this work proposes, via Deep Neural Network (DNN), U-Net, to segment images of rat tibia, the main idea was to use AI architectures added to the image quantification technique, bone histomorphometry. To obtain the images, it was used the non-destructive technique of Computerized Microtomography obtained by X-rays from Synchrotron Radiation (µTC-RS). The initial objective was to enable models to eliminate marrow and other artifacts, leaving only bone; the final objective was to contribute to the state of the art in the use of PA-based methods in contrast to traditional segmentation methods, seeking to apply them to biomedical images. In this study, the developed models resulted in an average of approximately 90% for the Sørensen-Dice coefficient metric, demonstrating a high replicability rate.
id UNB-19_6b0bd82f86b55f8986bfc58d951e9ec9
oai_identifier_str oai:ojs.pkp.sfu.ca:article/46854
network_acronym_str UNB-19
network_name_str Revista Interdisciplinar de Pesquisa em Engenharia
repository_id_str
spelling U-NET APPLIED TO BONE SEGMENTATION ON COMPUTED MICROTOMOGRAPHIES OBTAINED BY SYNCHROTRON RADIATION FOR HISTOMORPHOMETRIC ANALYSESU-NET aplicada a segmentação de ossos em microtomografias computadorizadas obtidas por radiação síncrotron para análises histomorfométricasU-NetSegmentationComputerized MicrotomographyHistomorphometrySynchrotron RadiationU-NetSegmentaçaoMicrotomografia ComputadorizadaRadiação SíncrotronActually, artificial intelligence (AI) participates increasingly in the elaboration of biomedical diagnoses. Clinical applications have used deep learning (DP) methods in the segmentation process, helping in the early treatment of diseases. Based on this principle, this work proposes, via Deep Neural Network (DNN), U-Net, to segment images of rat tibia, the main idea was to use AI architectures added to the image quantification technique, bone histomorphometry. To obtain the images, it was used the non-destructive technique of Computerized Microtomography obtained by X-rays from Synchrotron Radiation (µTC-RS). The initial objective was to enable models to eliminate marrow and other artifacts, leaving only bone; the final objective was to contribute to the state of the art in the use of PA-based methods in contrast to traditional segmentation methods, seeking to apply them to biomedical images. In this study, the developed models resulted in an average of approximately 90% for the Sørensen-Dice coefficient metric, demonstrating a high replicability rate.Atualmente, a inteligência artificial (IA) participa cada vez mais na elaboração de diagnósticos biomédicos. Aplicações clínicas têm utilizado de métodos de aprendizagem profunda (AP) no processo de segmentação, auxiliando no tratamento antecipado de doenças. Partindo desse pressuposto, este trabalho propõe, via Rede Neural Profunda (RNP), U-Net, segmentar imagens de tíbia de rato, tendo como ideia central utilizar arquiteturas de IA somada a técnica de quantificação de imagem, histomorfometria óssea. Para obtenção das imagens foi utilizado a técnica não destrutiva de Microtomografia Computadorizada obtida por raio-x oriundos de Radiação Síncrotron (µTC-RS). O objetivo inicial foi capacitar modelos para eliminar medula e outros artefatos, permanecendo somente osso; tendo como objetivo final buscar contribuir com o estado da arte no que dita o uso de métodos baseados em AP em contrapartida com métodos tradicionais de segmentação, na busca de aplicá-las em imagens biomédicas. Nesse estudo, os modelos desenvolvidos resultaram em uma média aproximada de 90% para a métrica do coeficiente do Sørensen-Dice, demonstrando uma alta taxa de replicabilidade.Programa de Pós-Graduação em Integridade de Materiais da Engenharia2023-01-31info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.unb.br/index.php/ripe/article/view/46854Revista Interdisciplinar de Pesquisa em Engenharia; Vol. 8 No. 2 (2022): Revista Interdisciplinar de Pesquisa em Engenharia ; 25-35Revista Interdisciplinar de Pesquisa em Engenharia; v. 8 n. 2 (2022): Revista Interdisciplinar de Pesquisa em Engenharia ; 25-352447-6102reponame:Revista Interdisciplinar de Pesquisa em Engenhariainstname:Universidade de Brasília (UnB)instacron:UNBporhttps://periodicos.unb.br/index.php/ripe/article/view/46854/36271Copyright (c) 2023 Revista Interdisciplinar de Pesquisa em Engenhariahttps://creativecommons.org/licenses/by-nd/4.0info:eu-repo/semantics/openAccessSouza Premoli Pinto de Oliveira, VitorDestefani Stefanato, EduardoJorge Gomes Pinheiro, ChristianoCély Rodrigues Barroso, ReginaAlvarenga de Moura Meneses, Anderson2023-01-31T20:59:12Zoai:ojs.pkp.sfu.ca:article/46854Revistahttps://periodicos.unb.br/index.php/ripePUBhttps://periodicos.unb.br/index.php/ripe/oaianflor@unb.br2447-61022447-6102opendoar:2023-01-31T20:59:12Revista Interdisciplinar de Pesquisa em Engenharia - Universidade de Brasília (UnB)false
dc.title.none.fl_str_mv U-NET APPLIED TO BONE SEGMENTATION ON COMPUTED MICROTOMOGRAPHIES OBTAINED BY SYNCHROTRON RADIATION FOR HISTOMORPHOMETRIC ANALYSES
U-NET aplicada a segmentação de ossos em microtomografias computadorizadas obtidas por radiação síncrotron para análises histomorfométricas
title U-NET APPLIED TO BONE SEGMENTATION ON COMPUTED MICROTOMOGRAPHIES OBTAINED BY SYNCHROTRON RADIATION FOR HISTOMORPHOMETRIC ANALYSES
spellingShingle U-NET APPLIED TO BONE SEGMENTATION ON COMPUTED MICROTOMOGRAPHIES OBTAINED BY SYNCHROTRON RADIATION FOR HISTOMORPHOMETRIC ANALYSES
Souza Premoli Pinto de Oliveira, Vitor
U-Net
Segmentation
Computerized Microtomography
Histomorphometry
Synchrotron Radiation
U-Net
Segmentaçao
Microtomografia Computadorizada
Radiação Síncrotron
title_short U-NET APPLIED TO BONE SEGMENTATION ON COMPUTED MICROTOMOGRAPHIES OBTAINED BY SYNCHROTRON RADIATION FOR HISTOMORPHOMETRIC ANALYSES
title_full U-NET APPLIED TO BONE SEGMENTATION ON COMPUTED MICROTOMOGRAPHIES OBTAINED BY SYNCHROTRON RADIATION FOR HISTOMORPHOMETRIC ANALYSES
title_fullStr U-NET APPLIED TO BONE SEGMENTATION ON COMPUTED MICROTOMOGRAPHIES OBTAINED BY SYNCHROTRON RADIATION FOR HISTOMORPHOMETRIC ANALYSES
title_full_unstemmed U-NET APPLIED TO BONE SEGMENTATION ON COMPUTED MICROTOMOGRAPHIES OBTAINED BY SYNCHROTRON RADIATION FOR HISTOMORPHOMETRIC ANALYSES
title_sort U-NET APPLIED TO BONE SEGMENTATION ON COMPUTED MICROTOMOGRAPHIES OBTAINED BY SYNCHROTRON RADIATION FOR HISTOMORPHOMETRIC ANALYSES
author Souza Premoli Pinto de Oliveira, Vitor
author_facet Souza Premoli Pinto de Oliveira, Vitor
Destefani Stefanato, Eduardo
Jorge Gomes Pinheiro, Christiano
Cély Rodrigues Barroso, Regina
Alvarenga de Moura Meneses, Anderson
author_role author
author2 Destefani Stefanato, Eduardo
Jorge Gomes Pinheiro, Christiano
Cély Rodrigues Barroso, Regina
Alvarenga de Moura Meneses, Anderson
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Souza Premoli Pinto de Oliveira, Vitor
Destefani Stefanato, Eduardo
Jorge Gomes Pinheiro, Christiano
Cély Rodrigues Barroso, Regina
Alvarenga de Moura Meneses, Anderson
dc.subject.por.fl_str_mv U-Net
Segmentation
Computerized Microtomography
Histomorphometry
Synchrotron Radiation
U-Net
Segmentaçao
Microtomografia Computadorizada
Radiação Síncrotron
topic U-Net
Segmentation
Computerized Microtomography
Histomorphometry
Synchrotron Radiation
U-Net
Segmentaçao
Microtomografia Computadorizada
Radiação Síncrotron
description Actually, artificial intelligence (AI) participates increasingly in the elaboration of biomedical diagnoses. Clinical applications have used deep learning (DP) methods in the segmentation process, helping in the early treatment of diseases. Based on this principle, this work proposes, via Deep Neural Network (DNN), U-Net, to segment images of rat tibia, the main idea was to use AI architectures added to the image quantification technique, bone histomorphometry. To obtain the images, it was used the non-destructive technique of Computerized Microtomography obtained by X-rays from Synchrotron Radiation (µTC-RS). The initial objective was to enable models to eliminate marrow and other artifacts, leaving only bone; the final objective was to contribute to the state of the art in the use of PA-based methods in contrast to traditional segmentation methods, seeking to apply them to biomedical images. In this study, the developed models resulted in an average of approximately 90% for the Sørensen-Dice coefficient metric, demonstrating a high replicability rate.
publishDate 2023
dc.date.none.fl_str_mv 2023-01-31
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicos.unb.br/index.php/ripe/article/view/46854
url https://periodicos.unb.br/index.php/ripe/article/view/46854
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://periodicos.unb.br/index.php/ripe/article/view/46854/36271
dc.rights.driver.fl_str_mv Copyright (c) 2023 Revista Interdisciplinar de Pesquisa em Engenharia
https://creativecommons.org/licenses/by-nd/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2023 Revista Interdisciplinar de Pesquisa em Engenharia
https://creativecommons.org/licenses/by-nd/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Programa de Pós-Graduação em Integridade de Materiais da Engenharia
publisher.none.fl_str_mv Programa de Pós-Graduação em Integridade de Materiais da Engenharia
dc.source.none.fl_str_mv Revista Interdisciplinar de Pesquisa em Engenharia; Vol. 8 No. 2 (2022): Revista Interdisciplinar de Pesquisa em Engenharia ; 25-35
Revista Interdisciplinar de Pesquisa em Engenharia; v. 8 n. 2 (2022): Revista Interdisciplinar de Pesquisa em Engenharia ; 25-35
2447-6102
reponame:Revista Interdisciplinar de Pesquisa em Engenharia
instname:Universidade de Brasília (UnB)
instacron:UNB
instname_str Universidade de Brasília (UnB)
instacron_str UNB
institution UNB
reponame_str Revista Interdisciplinar de Pesquisa em Engenharia
collection Revista Interdisciplinar de Pesquisa em Engenharia
repository.name.fl_str_mv Revista Interdisciplinar de Pesquisa em Engenharia - Universidade de Brasília (UnB)
repository.mail.fl_str_mv anflor@unb.br
_version_ 1798315224282955776