U-NET APPLIED TO BONE SEGMENTATION ON COMPUTED MICROTOMOGRAPHIES OBTAINED BY SYNCHROTRON RADIATION FOR HISTOMORPHOMETRIC ANALYSES
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Revista Interdisciplinar de Pesquisa em Engenharia |
Texto Completo: | https://periodicos.unb.br/index.php/ripe/article/view/46854 |
Resumo: | Actually, artificial intelligence (AI) participates increasingly in the elaboration of biomedical diagnoses. Clinical applications have used deep learning (DP) methods in the segmentation process, helping in the early treatment of diseases. Based on this principle, this work proposes, via Deep Neural Network (DNN), U-Net, to segment images of rat tibia, the main idea was to use AI architectures added to the image quantification technique, bone histomorphometry. To obtain the images, it was used the non-destructive technique of Computerized Microtomography obtained by X-rays from Synchrotron Radiation (µTC-RS). The initial objective was to enable models to eliminate marrow and other artifacts, leaving only bone; the final objective was to contribute to the state of the art in the use of PA-based methods in contrast to traditional segmentation methods, seeking to apply them to biomedical images. In this study, the developed models resulted in an average of approximately 90% for the Sørensen-Dice coefficient metric, demonstrating a high replicability rate. |
id |
UNB-19_6b0bd82f86b55f8986bfc58d951e9ec9 |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/46854 |
network_acronym_str |
UNB-19 |
network_name_str |
Revista Interdisciplinar de Pesquisa em Engenharia |
repository_id_str |
|
spelling |
U-NET APPLIED TO BONE SEGMENTATION ON COMPUTED MICROTOMOGRAPHIES OBTAINED BY SYNCHROTRON RADIATION FOR HISTOMORPHOMETRIC ANALYSESU-NET aplicada a segmentação de ossos em microtomografias computadorizadas obtidas por radiação síncrotron para análises histomorfométricasU-NetSegmentationComputerized MicrotomographyHistomorphometrySynchrotron RadiationU-NetSegmentaçaoMicrotomografia ComputadorizadaRadiação SíncrotronActually, artificial intelligence (AI) participates increasingly in the elaboration of biomedical diagnoses. Clinical applications have used deep learning (DP) methods in the segmentation process, helping in the early treatment of diseases. Based on this principle, this work proposes, via Deep Neural Network (DNN), U-Net, to segment images of rat tibia, the main idea was to use AI architectures added to the image quantification technique, bone histomorphometry. To obtain the images, it was used the non-destructive technique of Computerized Microtomography obtained by X-rays from Synchrotron Radiation (µTC-RS). The initial objective was to enable models to eliminate marrow and other artifacts, leaving only bone; the final objective was to contribute to the state of the art in the use of PA-based methods in contrast to traditional segmentation methods, seeking to apply them to biomedical images. In this study, the developed models resulted in an average of approximately 90% for the Sørensen-Dice coefficient metric, demonstrating a high replicability rate.Atualmente, a inteligência artificial (IA) participa cada vez mais na elaboração de diagnósticos biomédicos. Aplicações clínicas têm utilizado de métodos de aprendizagem profunda (AP) no processo de segmentação, auxiliando no tratamento antecipado de doenças. Partindo desse pressuposto, este trabalho propõe, via Rede Neural Profunda (RNP), U-Net, segmentar imagens de tíbia de rato, tendo como ideia central utilizar arquiteturas de IA somada a técnica de quantificação de imagem, histomorfometria óssea. Para obtenção das imagens foi utilizado a técnica não destrutiva de Microtomografia Computadorizada obtida por raio-x oriundos de Radiação Síncrotron (µTC-RS). O objetivo inicial foi capacitar modelos para eliminar medula e outros artefatos, permanecendo somente osso; tendo como objetivo final buscar contribuir com o estado da arte no que dita o uso de métodos baseados em AP em contrapartida com métodos tradicionais de segmentação, na busca de aplicá-las em imagens biomédicas. Nesse estudo, os modelos desenvolvidos resultaram em uma média aproximada de 90% para a métrica do coeficiente do Sørensen-Dice, demonstrando uma alta taxa de replicabilidade.Programa de Pós-Graduação em Integridade de Materiais da Engenharia2023-01-31info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.unb.br/index.php/ripe/article/view/46854Revista Interdisciplinar de Pesquisa em Engenharia; Vol. 8 No. 2 (2022): Revista Interdisciplinar de Pesquisa em Engenharia ; 25-35Revista Interdisciplinar de Pesquisa em Engenharia; v. 8 n. 2 (2022): Revista Interdisciplinar de Pesquisa em Engenharia ; 25-352447-6102reponame:Revista Interdisciplinar de Pesquisa em Engenhariainstname:Universidade de Brasília (UnB)instacron:UNBporhttps://periodicos.unb.br/index.php/ripe/article/view/46854/36271Copyright (c) 2023 Revista Interdisciplinar de Pesquisa em Engenhariahttps://creativecommons.org/licenses/by-nd/4.0info:eu-repo/semantics/openAccessSouza Premoli Pinto de Oliveira, VitorDestefani Stefanato, EduardoJorge Gomes Pinheiro, ChristianoCély Rodrigues Barroso, ReginaAlvarenga de Moura Meneses, Anderson2023-01-31T20:59:12Zoai:ojs.pkp.sfu.ca:article/46854Revistahttps://periodicos.unb.br/index.php/ripePUBhttps://periodicos.unb.br/index.php/ripe/oaianflor@unb.br2447-61022447-6102opendoar:2023-01-31T20:59:12Revista Interdisciplinar de Pesquisa em Engenharia - Universidade de Brasília (UnB)false |
dc.title.none.fl_str_mv |
U-NET APPLIED TO BONE SEGMENTATION ON COMPUTED MICROTOMOGRAPHIES OBTAINED BY SYNCHROTRON RADIATION FOR HISTOMORPHOMETRIC ANALYSES U-NET aplicada a segmentação de ossos em microtomografias computadorizadas obtidas por radiação síncrotron para análises histomorfométricas |
title |
U-NET APPLIED TO BONE SEGMENTATION ON COMPUTED MICROTOMOGRAPHIES OBTAINED BY SYNCHROTRON RADIATION FOR HISTOMORPHOMETRIC ANALYSES |
spellingShingle |
U-NET APPLIED TO BONE SEGMENTATION ON COMPUTED MICROTOMOGRAPHIES OBTAINED BY SYNCHROTRON RADIATION FOR HISTOMORPHOMETRIC ANALYSES Souza Premoli Pinto de Oliveira, Vitor U-Net Segmentation Computerized Microtomography Histomorphometry Synchrotron Radiation U-Net Segmentaçao Microtomografia Computadorizada Radiação Síncrotron |
title_short |
U-NET APPLIED TO BONE SEGMENTATION ON COMPUTED MICROTOMOGRAPHIES OBTAINED BY SYNCHROTRON RADIATION FOR HISTOMORPHOMETRIC ANALYSES |
title_full |
U-NET APPLIED TO BONE SEGMENTATION ON COMPUTED MICROTOMOGRAPHIES OBTAINED BY SYNCHROTRON RADIATION FOR HISTOMORPHOMETRIC ANALYSES |
title_fullStr |
U-NET APPLIED TO BONE SEGMENTATION ON COMPUTED MICROTOMOGRAPHIES OBTAINED BY SYNCHROTRON RADIATION FOR HISTOMORPHOMETRIC ANALYSES |
title_full_unstemmed |
U-NET APPLIED TO BONE SEGMENTATION ON COMPUTED MICROTOMOGRAPHIES OBTAINED BY SYNCHROTRON RADIATION FOR HISTOMORPHOMETRIC ANALYSES |
title_sort |
U-NET APPLIED TO BONE SEGMENTATION ON COMPUTED MICROTOMOGRAPHIES OBTAINED BY SYNCHROTRON RADIATION FOR HISTOMORPHOMETRIC ANALYSES |
author |
Souza Premoli Pinto de Oliveira, Vitor |
author_facet |
Souza Premoli Pinto de Oliveira, Vitor Destefani Stefanato, Eduardo Jorge Gomes Pinheiro, Christiano Cély Rodrigues Barroso, Regina Alvarenga de Moura Meneses, Anderson |
author_role |
author |
author2 |
Destefani Stefanato, Eduardo Jorge Gomes Pinheiro, Christiano Cély Rodrigues Barroso, Regina Alvarenga de Moura Meneses, Anderson |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Souza Premoli Pinto de Oliveira, Vitor Destefani Stefanato, Eduardo Jorge Gomes Pinheiro, Christiano Cély Rodrigues Barroso, Regina Alvarenga de Moura Meneses, Anderson |
dc.subject.por.fl_str_mv |
U-Net Segmentation Computerized Microtomography Histomorphometry Synchrotron Radiation U-Net Segmentaçao Microtomografia Computadorizada Radiação Síncrotron |
topic |
U-Net Segmentation Computerized Microtomography Histomorphometry Synchrotron Radiation U-Net Segmentaçao Microtomografia Computadorizada Radiação Síncrotron |
description |
Actually, artificial intelligence (AI) participates increasingly in the elaboration of biomedical diagnoses. Clinical applications have used deep learning (DP) methods in the segmentation process, helping in the early treatment of diseases. Based on this principle, this work proposes, via Deep Neural Network (DNN), U-Net, to segment images of rat tibia, the main idea was to use AI architectures added to the image quantification technique, bone histomorphometry. To obtain the images, it was used the non-destructive technique of Computerized Microtomography obtained by X-rays from Synchrotron Radiation (µTC-RS). The initial objective was to enable models to eliminate marrow and other artifacts, leaving only bone; the final objective was to contribute to the state of the art in the use of PA-based methods in contrast to traditional segmentation methods, seeking to apply them to biomedical images. In this study, the developed models resulted in an average of approximately 90% for the Sørensen-Dice coefficient metric, demonstrating a high replicability rate. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-01-31 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://periodicos.unb.br/index.php/ripe/article/view/46854 |
url |
https://periodicos.unb.br/index.php/ripe/article/view/46854 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://periodicos.unb.br/index.php/ripe/article/view/46854/36271 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2023 Revista Interdisciplinar de Pesquisa em Engenharia https://creativecommons.org/licenses/by-nd/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2023 Revista Interdisciplinar de Pesquisa em Engenharia https://creativecommons.org/licenses/by-nd/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Programa de Pós-Graduação em Integridade de Materiais da Engenharia |
publisher.none.fl_str_mv |
Programa de Pós-Graduação em Integridade de Materiais da Engenharia |
dc.source.none.fl_str_mv |
Revista Interdisciplinar de Pesquisa em Engenharia; Vol. 8 No. 2 (2022): Revista Interdisciplinar de Pesquisa em Engenharia ; 25-35 Revista Interdisciplinar de Pesquisa em Engenharia; v. 8 n. 2 (2022): Revista Interdisciplinar de Pesquisa em Engenharia ; 25-35 2447-6102 reponame:Revista Interdisciplinar de Pesquisa em Engenharia instname:Universidade de Brasília (UnB) instacron:UNB |
instname_str |
Universidade de Brasília (UnB) |
instacron_str |
UNB |
institution |
UNB |
reponame_str |
Revista Interdisciplinar de Pesquisa em Engenharia |
collection |
Revista Interdisciplinar de Pesquisa em Engenharia |
repository.name.fl_str_mv |
Revista Interdisciplinar de Pesquisa em Engenharia - Universidade de Brasília (UnB) |
repository.mail.fl_str_mv |
anflor@unb.br |
_version_ |
1798315224282955776 |