THE FINITE DIFFERENCE METHOD APPLIED TO THE 1D THERMOELASTIC PROBLEM

Detalhes bibliográficos
Autor(a) principal: da Silveira Jr., Márcio Heron
Data de Publicação: 2017
Outros Autores: Piaz, Carlos Eduardo, Cislinski, Janderson, Marciniak, Adelcio, Jurgensen, Diego Sorg, Melo, Marcos Antônio, Hacke, Orestes, Rauen, Mateus
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista Interdisciplinar de Pesquisa em Engenharia
DOI: 10.26512/ripe.v2i26.20779
Texto Completo: https://periodicos.unb.br/index.php/ripe/article/view/20779
Resumo: In this paper the analytical and numerical solution are obtained for the problem of heating a metal bar by heat conduction in steady state at one of it’s ends. Initially the analytical solution for each variable of interest (displacements, strains and stresses) is demonstrated, as well as the temperature distribution. Then, numerical approximations are performed using the Finite Difference Method for uniform grids, which obtain the numerical solutions of the variables of interest with their respective error of discretization. It is also performed an experiment in the laboratory where the displacements, strains and temperature distribution is verified. Finally, the error generated by the Finite Difference Method is verified comparing the numerical solutions with the analytical and the experimental results
id UNB-19_b8971ab4a5863a464e473c9a2c2576f8
oai_identifier_str oai:ojs.pkp.sfu.ca:article/20779
network_acronym_str UNB-19
network_name_str Revista Interdisciplinar de Pesquisa em Engenharia
spelling THE FINITE DIFFERENCE METHOD APPLIED TO THE 1D THERMOELASTIC PROBLEMFinite Difference Method. Heat Conduction. Thermoelasticity. Experiment.In this paper the analytical and numerical solution are obtained for the problem of heating a metal bar by heat conduction in steady state at one of it’s ends. Initially the analytical solution for each variable of interest (displacements, strains and stresses) is demonstrated, as well as the temperature distribution. Then, numerical approximations are performed using the Finite Difference Method for uniform grids, which obtain the numerical solutions of the variables of interest with their respective error of discretization. It is also performed an experiment in the laboratory where the displacements, strains and temperature distribution is verified. Finally, the error generated by the Finite Difference Method is verified comparing the numerical solutions with the analytical and the experimental resultsPrograma de Pós-Graduação em Integridade de Materiais da Engenharia2017-02-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.unb.br/index.php/ripe/article/view/2077910.26512/ripe.v2i26.20779Revista Interdisciplinar de Pesquisa em Engenharia; Vol. 2 No. 26 (2016): UNDERGRADUATE POSTER SESSION (II); 53-57Revista Interdisciplinar de Pesquisa em Engenharia; v. 2 n. 26 (2016): UNDERGRADUATE POSTER SESSION (II); 53-572447-6102reponame:Revista Interdisciplinar de Pesquisa em Engenhariainstname:Universidade de Brasília (UnB)instacron:UNBenghttps://periodicos.unb.br/index.php/ripe/article/view/20779/19149Copyright (c) 2018 Revista Interdisciplinar de Pesquisa em Engenharia - RIPEinfo:eu-repo/semantics/openAccessda Silveira Jr., Márcio HeronPiaz, Carlos EduardoCislinski, JandersonMarciniak, AdelcioJurgensen, Diego SorgMelo, Marcos AntônioHacke, OrestesRauen, Mateus2019-06-18T14:24:14Zoai:ojs.pkp.sfu.ca:article/20779Revistahttps://periodicos.unb.br/index.php/ripePUBhttps://periodicos.unb.br/index.php/ripe/oaianflor@unb.br2447-61022447-6102opendoar:2019-06-18T14:24:14Revista Interdisciplinar de Pesquisa em Engenharia - Universidade de Brasília (UnB)false
dc.title.none.fl_str_mv THE FINITE DIFFERENCE METHOD APPLIED TO THE 1D THERMOELASTIC PROBLEM
title THE FINITE DIFFERENCE METHOD APPLIED TO THE 1D THERMOELASTIC PROBLEM
spellingShingle THE FINITE DIFFERENCE METHOD APPLIED TO THE 1D THERMOELASTIC PROBLEM
THE FINITE DIFFERENCE METHOD APPLIED TO THE 1D THERMOELASTIC PROBLEM
da Silveira Jr., Márcio Heron
Finite Difference Method. Heat Conduction. Thermoelasticity. Experiment.
da Silveira Jr., Márcio Heron
Finite Difference Method. Heat Conduction. Thermoelasticity. Experiment.
title_short THE FINITE DIFFERENCE METHOD APPLIED TO THE 1D THERMOELASTIC PROBLEM
title_full THE FINITE DIFFERENCE METHOD APPLIED TO THE 1D THERMOELASTIC PROBLEM
title_fullStr THE FINITE DIFFERENCE METHOD APPLIED TO THE 1D THERMOELASTIC PROBLEM
THE FINITE DIFFERENCE METHOD APPLIED TO THE 1D THERMOELASTIC PROBLEM
title_full_unstemmed THE FINITE DIFFERENCE METHOD APPLIED TO THE 1D THERMOELASTIC PROBLEM
THE FINITE DIFFERENCE METHOD APPLIED TO THE 1D THERMOELASTIC PROBLEM
title_sort THE FINITE DIFFERENCE METHOD APPLIED TO THE 1D THERMOELASTIC PROBLEM
author da Silveira Jr., Márcio Heron
author_facet da Silveira Jr., Márcio Heron
da Silveira Jr., Márcio Heron
Piaz, Carlos Eduardo
Cislinski, Janderson
Marciniak, Adelcio
Jurgensen, Diego Sorg
Melo, Marcos Antônio
Hacke, Orestes
Rauen, Mateus
Piaz, Carlos Eduardo
Cislinski, Janderson
Marciniak, Adelcio
Jurgensen, Diego Sorg
Melo, Marcos Antônio
Hacke, Orestes
Rauen, Mateus
author_role author
author2 Piaz, Carlos Eduardo
Cislinski, Janderson
Marciniak, Adelcio
Jurgensen, Diego Sorg
Melo, Marcos Antônio
Hacke, Orestes
Rauen, Mateus
author2_role author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv da Silveira Jr., Márcio Heron
Piaz, Carlos Eduardo
Cislinski, Janderson
Marciniak, Adelcio
Jurgensen, Diego Sorg
Melo, Marcos Antônio
Hacke, Orestes
Rauen, Mateus
dc.subject.por.fl_str_mv Finite Difference Method. Heat Conduction. Thermoelasticity. Experiment.
topic Finite Difference Method. Heat Conduction. Thermoelasticity. Experiment.
description In this paper the analytical and numerical solution are obtained for the problem of heating a metal bar by heat conduction in steady state at one of it’s ends. Initially the analytical solution for each variable of interest (displacements, strains and stresses) is demonstrated, as well as the temperature distribution. Then, numerical approximations are performed using the Finite Difference Method for uniform grids, which obtain the numerical solutions of the variables of interest with their respective error of discretization. It is also performed an experiment in the laboratory where the displacements, strains and temperature distribution is verified. Finally, the error generated by the Finite Difference Method is verified comparing the numerical solutions with the analytical and the experimental results
publishDate 2017
dc.date.none.fl_str_mv 2017-02-10
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicos.unb.br/index.php/ripe/article/view/20779
10.26512/ripe.v2i26.20779
url https://periodicos.unb.br/index.php/ripe/article/view/20779
identifier_str_mv 10.26512/ripe.v2i26.20779
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://periodicos.unb.br/index.php/ripe/article/view/20779/19149
dc.rights.driver.fl_str_mv Copyright (c) 2018 Revista Interdisciplinar de Pesquisa em Engenharia - RIPE
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2018 Revista Interdisciplinar de Pesquisa em Engenharia - RIPE
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Programa de Pós-Graduação em Integridade de Materiais da Engenharia
publisher.none.fl_str_mv Programa de Pós-Graduação em Integridade de Materiais da Engenharia
dc.source.none.fl_str_mv Revista Interdisciplinar de Pesquisa em Engenharia; Vol. 2 No. 26 (2016): UNDERGRADUATE POSTER SESSION (II); 53-57
Revista Interdisciplinar de Pesquisa em Engenharia; v. 2 n. 26 (2016): UNDERGRADUATE POSTER SESSION (II); 53-57
2447-6102
reponame:Revista Interdisciplinar de Pesquisa em Engenharia
instname:Universidade de Brasília (UnB)
instacron:UNB
instname_str Universidade de Brasília (UnB)
instacron_str UNB
institution UNB
reponame_str Revista Interdisciplinar de Pesquisa em Engenharia
collection Revista Interdisciplinar de Pesquisa em Engenharia
repository.name.fl_str_mv Revista Interdisciplinar de Pesquisa em Engenharia - Universidade de Brasília (UnB)
repository.mail.fl_str_mv anflor@unb.br
_version_ 1822181454671511552
dc.identifier.doi.none.fl_str_mv 10.26512/ripe.v2i26.20779