Computational aspects on numerical inversion of the Laplace Transform applied to transport problem
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Revista Interdisciplinar de Pesquisa em Engenharia |
Texto Completo: | https://periodicos.unb.br/index.php/ripe/article/view/35142 |
Resumo: | The use of numerical inversion approaches becomes necessary when the Laplace Transform cannot be inverted analytically by usual techniques. However, the numerical inverse Laplace transform is generally an ill posed problem, and there is no universal method which works well for all problems. In this study, we selected four commonly used numerical inverse Laplace transform methods to evaluate their performance in dealing with heat conduction problems. This work explored the use of four methods for the numerical inversion of Laplace transform, in order to evaluate its performance in solving transient one-dimensional heat conduction problems: the Stehfest, the Fixed-Talbot, the Fourier Series and the Zakian methods. We specifically investigated, in this process, each method's optimal free parameters and its efficiency in elementary functions treatment. In this process, the Talbot-Fixed method proved to be efficient for the inversion of both functions with oscillatory behavior and involving decreasing exponentials. Specifically, for the latter class of functions, the methods of Stehfest and Zakian provided satisfactory results. In the study of the heat conduction problem, the four methods presented good performance, and the Talbot-Fixo presented better results (less absolute error) when compared to the others. |
id |
UNB-19_d00f7fa56d91763b2de51672026de276 |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/35142 |
network_acronym_str |
UNB-19 |
network_name_str |
Revista Interdisciplinar de Pesquisa em Engenharia |
repository_id_str |
|
spelling |
Computational aspects on numerical inversion of the Laplace Transform applied to transport problemAspectos computacionais da inversão numérica da Transformada de Laplace aplicada a um problema de transporteTransformada de Laplace; Métodos Numéricos; Problema de Condução de Calor. The use of numerical inversion approaches becomes necessary when the Laplace Transform cannot be inverted analytically by usual techniques. However, the numerical inverse Laplace transform is generally an ill posed problem, and there is no universal method which works well for all problems. In this study, we selected four commonly used numerical inverse Laplace transform methods to evaluate their performance in dealing with heat conduction problems. This work explored the use of four methods for the numerical inversion of Laplace transform, in order to evaluate its performance in solving transient one-dimensional heat conduction problems: the Stehfest, the Fixed-Talbot, the Fourier Series and the Zakian methods. We specifically investigated, in this process, each method's optimal free parameters and its efficiency in elementary functions treatment. In this process, the Talbot-Fixed method proved to be efficient for the inversion of both functions with oscillatory behavior and involving decreasing exponentials. Specifically, for the latter class of functions, the methods of Stehfest and Zakian provided satisfactory results. In the study of the heat conduction problem, the four methods presented good performance, and the Talbot-Fixo presented better results (less absolute error) when compared to the others. Abordagens numéricas de inversão são necessárias quando a Transformada de Laplace não pode ser invertida analiticamente por técnicas usuais. Baseados normalmente em problemas mal postos, não há um método que seja universal no sentido de fornecer soluções precisas para todas as classes de problemas. Nesse trabalho, explorou-se o uso de quatro métodos para a inversão numérica da Transformada de Laplace, com o objetivo de avaliar seu desempenho na resolução de problemas de condução de calor unidimensional em regime transiente: Stehfest, Talbot-Fixo, Séries de Fourier e Zakian. Primeiramente foram investigados os parâmetros livres ideais de cada método e a sua eficiência no tratamento de funções elementares. Nesse processo, o método de Talbot-Fixo mostrou-se eficiente na inversão tanto de funções com comportamento oscilatório quanto envolvendo exponenciais decrescentes. Especificamente para esta última classe de funções, os métodos de Stehfest e Zakian forneceram resultados satisfatórios. No tratamento do problema de condução de calor, os quatro métodos demonstraram um bom desempenho, sendo que o Talbot-Fixo apresentou melhores resultados (menor erro absoluto) quando comparado aos demais.Programa de Pós-Graduação em Integridade de Materiais da Engenharia2020-12-31info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.unb.br/index.php/ripe/article/view/35142Revista Interdisciplinar de Pesquisa em Engenharia; Vol. 6 No. 2 (2020): Revista Interdisciplinar de Pesquisa em Engenharia; 139-152Revista Interdisciplinar de Pesquisa em Engenharia; v. 6 n. 2 (2020): Revista Interdisciplinar de Pesquisa em Engenharia; 139-1522447-610210.26512/ripe.v6i2reponame:Revista Interdisciplinar de Pesquisa em Engenhariainstname:Universidade de Brasília (UnB)instacron:UNBporhttps://periodicos.unb.br/index.php/ripe/article/view/35142/28664Copyright (c) 2021 Revista Interdisciplinar de Pesquisa em Engenhariahttps://creativecommons.org/licenses/by-nd/4.0info:eu-repo/semantics/openAccessAlves Ferreira, JuciaraCalixto, J.C.R.konflanz, E.Rodriguez, B.D.A.Filho, J.P.2021-01-08T16:59:19Zoai:ojs.pkp.sfu.ca:article/35142Revistahttps://periodicos.unb.br/index.php/ripePUBhttps://periodicos.unb.br/index.php/ripe/oaianflor@unb.br2447-61022447-6102opendoar:2021-01-08T16:59:19Revista Interdisciplinar de Pesquisa em Engenharia - Universidade de Brasília (UnB)false |
dc.title.none.fl_str_mv |
Computational aspects on numerical inversion of the Laplace Transform applied to transport problem Aspectos computacionais da inversão numérica da Transformada de Laplace aplicada a um problema de transporte |
title |
Computational aspects on numerical inversion of the Laplace Transform applied to transport problem |
spellingShingle |
Computational aspects on numerical inversion of the Laplace Transform applied to transport problem Alves Ferreira, Juciara Transformada de Laplace; Métodos Numéricos; Problema de Condução de Calor. |
title_short |
Computational aspects on numerical inversion of the Laplace Transform applied to transport problem |
title_full |
Computational aspects on numerical inversion of the Laplace Transform applied to transport problem |
title_fullStr |
Computational aspects on numerical inversion of the Laplace Transform applied to transport problem |
title_full_unstemmed |
Computational aspects on numerical inversion of the Laplace Transform applied to transport problem |
title_sort |
Computational aspects on numerical inversion of the Laplace Transform applied to transport problem |
author |
Alves Ferreira, Juciara |
author_facet |
Alves Ferreira, Juciara Calixto, J.C.R. konflanz, E. Rodriguez, B.D.A. Filho, J.P. |
author_role |
author |
author2 |
Calixto, J.C.R. konflanz, E. Rodriguez, B.D.A. Filho, J.P. |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Alves Ferreira, Juciara Calixto, J.C.R. konflanz, E. Rodriguez, B.D.A. Filho, J.P. |
dc.subject.por.fl_str_mv |
Transformada de Laplace; Métodos Numéricos; Problema de Condução de Calor. |
topic |
Transformada de Laplace; Métodos Numéricos; Problema de Condução de Calor. |
description |
The use of numerical inversion approaches becomes necessary when the Laplace Transform cannot be inverted analytically by usual techniques. However, the numerical inverse Laplace transform is generally an ill posed problem, and there is no universal method which works well for all problems. In this study, we selected four commonly used numerical inverse Laplace transform methods to evaluate their performance in dealing with heat conduction problems. This work explored the use of four methods for the numerical inversion of Laplace transform, in order to evaluate its performance in solving transient one-dimensional heat conduction problems: the Stehfest, the Fixed-Talbot, the Fourier Series and the Zakian methods. We specifically investigated, in this process, each method's optimal free parameters and its efficiency in elementary functions treatment. In this process, the Talbot-Fixed method proved to be efficient for the inversion of both functions with oscillatory behavior and involving decreasing exponentials. Specifically, for the latter class of functions, the methods of Stehfest and Zakian provided satisfactory results. In the study of the heat conduction problem, the four methods presented good performance, and the Talbot-Fixo presented better results (less absolute error) when compared to the others. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-31 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://periodicos.unb.br/index.php/ripe/article/view/35142 |
url |
https://periodicos.unb.br/index.php/ripe/article/view/35142 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://periodicos.unb.br/index.php/ripe/article/view/35142/28664 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2021 Revista Interdisciplinar de Pesquisa em Engenharia https://creativecommons.org/licenses/by-nd/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2021 Revista Interdisciplinar de Pesquisa em Engenharia https://creativecommons.org/licenses/by-nd/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Programa de Pós-Graduação em Integridade de Materiais da Engenharia |
publisher.none.fl_str_mv |
Programa de Pós-Graduação em Integridade de Materiais da Engenharia |
dc.source.none.fl_str_mv |
Revista Interdisciplinar de Pesquisa em Engenharia; Vol. 6 No. 2 (2020): Revista Interdisciplinar de Pesquisa em Engenharia; 139-152 Revista Interdisciplinar de Pesquisa em Engenharia; v. 6 n. 2 (2020): Revista Interdisciplinar de Pesquisa em Engenharia; 139-152 2447-6102 10.26512/ripe.v6i2 reponame:Revista Interdisciplinar de Pesquisa em Engenharia instname:Universidade de Brasília (UnB) instacron:UNB |
instname_str |
Universidade de Brasília (UnB) |
instacron_str |
UNB |
institution |
UNB |
reponame_str |
Revista Interdisciplinar de Pesquisa em Engenharia |
collection |
Revista Interdisciplinar de Pesquisa em Engenharia |
repository.name.fl_str_mv |
Revista Interdisciplinar de Pesquisa em Engenharia - Universidade de Brasília (UnB) |
repository.mail.fl_str_mv |
anflor@unb.br |
_version_ |
1798315227191705600 |