Efforts of a structural calculated masonry building with a rigid and elastic foundation
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | P@ranoá |
Texto Completo: | https://periodicos.unb.br/index.php/paranoa/article/view/30454 |
Resumo: | This work evaluates the influence of the rigidity of the foundation in a four-story structural masonry building on the compressive stresses of the walls. The results were obtained from structural models, taking into account vertical and horizontal actions, rigid foundation and elastic base. The building analyzed is symmetrical in both directions and was developed to demonstrate, in a simplified way, what normally occurs in usual buildings. For this case study, walls with and without openings (windows and doors) were modeled, with the objective of enabling the interaction and distribution of efforts resulting from the various calculation hypotheses. For the construction of the structural models, the SAP2000 software was used, using linear portico and plate elements. The analyzes were carried out through actions classified as permanent (D), variables (L) and wind (W “90º” and W “0º”), generating various combinations and interactions between them. The modeling premises for the building are: structure - slabs/walls in plate elements; foundation - radier with piles being used plate and bar elements respectively. Two types of solution for foundations were addressed in the work. In the first model, the support of the tip of the pile is considered rigid (non-removable), without soil-structure interaction. In the second, the support of the pile tip is considered flexible, with soil-structure interaction occurring. For both models, the interaction between the soil and the radier was not considered in this study. In the representation of flexible support, the spring coefficient was obtained from a geotechnical analysis of a load test performed on the soil of a city located in the Federal District, Brazil. Comparing the structural behavior of the building on foundations with rigid or elastic supports, it was observed that, for the same combinations of actions applied in the two models, no significant differences were verified neither in the compression stresses of the walls, nor even in the bending moments of the slabs. The values ”‹”‹of the active stresses, obtained by the structural models, were superior to the resistant stresses of the masonry blocks in some points close to the ends, openings and meetings of the walls. This fact proved the need to carefully evaluate the meetings of walls and where there are openings (windows and doors). It is concluded that the actions of the wind do not significantly interfere in a 4-story structural masonry building. The differences between the stresses with rigid and elastic foundation on the walls, for this case, are very small and have no influence on the design. Most points of maximum tension are located in the lower corners of the walls. Tensile stresses arise in the masonry near the openings. Therefore, it is necessary to carry out grouting and framing in the blocks located at the wall junctions and also in the blocks adjacent to the openings (windows and doors). In the lower and upper parts of the openings, it is necessary to use lintels/counterweights, to combat tensile stresses in masonry. The indicated procedures will guarantee greater security of the building due to the increase in the strength of the blocks reinforced by grout/reinforcement, corroborating the technical understandings on the subject. |
id |
UNB-28_923640411cf1246aa8942297c50f6ad2 |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/30454 |
network_acronym_str |
UNB-28 |
network_name_str |
P@ranoá |
repository_id_str |
|
spelling |
Efforts of a structural calculated masonry building with a rigid and elastic foundationEsfuerzos de un edificio de albañilería estructural calculado con una fundación rígida y elásticaEsforços de um edifício em alvenaria estrutural calculados com fundação rígida e elásticaalvenaria estrutural; apoio rígido; apoio elásticoalbañilería estructural; soporte rígido; soporte elásticostructural masonry; rigid support; elastic supportThis work evaluates the influence of the rigidity of the foundation in a four-story structural masonry building on the compressive stresses of the walls. The results were obtained from structural models, taking into account vertical and horizontal actions, rigid foundation and elastic base. The building analyzed is symmetrical in both directions and was developed to demonstrate, in a simplified way, what normally occurs in usual buildings. For this case study, walls with and without openings (windows and doors) were modeled, with the objective of enabling the interaction and distribution of efforts resulting from the various calculation hypotheses. For the construction of the structural models, the SAP2000 software was used, using linear portico and plate elements. The analyzes were carried out through actions classified as permanent (D), variables (L) and wind (W “90º” and W “0º”), generating various combinations and interactions between them. The modeling premises for the building are: structure - slabs/walls in plate elements; foundation - radier with piles being used plate and bar elements respectively. Two types of solution for foundations were addressed in the work. In the first model, the support of the tip of the pile is considered rigid (non-removable), without soil-structure interaction. In the second, the support of the pile tip is considered flexible, with soil-structure interaction occurring. For both models, the interaction between the soil and the radier was not considered in this study. In the representation of flexible support, the spring coefficient was obtained from a geotechnical analysis of a load test performed on the soil of a city located in the Federal District, Brazil. Comparing the structural behavior of the building on foundations with rigid or elastic supports, it was observed that, for the same combinations of actions applied in the two models, no significant differences were verified neither in the compression stresses of the walls, nor even in the bending moments of the slabs. The values ”‹”‹of the active stresses, obtained by the structural models, were superior to the resistant stresses of the masonry blocks in some points close to the ends, openings and meetings of the walls. This fact proved the need to carefully evaluate the meetings of walls and where there are openings (windows and doors). It is concluded that the actions of the wind do not significantly interfere in a 4-story structural masonry building. The differences between the stresses with rigid and elastic foundation on the walls, for this case, are very small and have no influence on the design. Most points of maximum tension are located in the lower corners of the walls. Tensile stresses arise in the masonry near the openings. Therefore, it is necessary to carry out grouting and framing in the blocks located at the wall junctions and also in the blocks adjacent to the openings (windows and doors). In the lower and upper parts of the openings, it is necessary to use lintels/counterweights, to combat tensile stresses in masonry. The indicated procedures will guarantee greater security of the building due to the increase in the strength of the blocks reinforced by grout/reinforcement, corroborating the technical understandings on the subject.Este trabajo evalúa la influencia de la rigidez de los cimientos en un edificio de mampostería estructural de cuatro pisos sobre las tensiones de compresión de las paredes. Los resultados se obtuvieron de modelos estructurales, teniendo en cuenta acciones verticales y horizontales, cimientos rígidos y bases elásticas. El edificio analizado es simétrico en ambas direcciones y fue desarrollado para demostrar, de manera simplificada, lo que normalmente ocurre en los edificios habituales. Para este estudio de caso, se modelaron paredes con y sin aberturas (ventanas y puertas), con el objetivo de permitir la interacción y distribución de los esfuerzos resultantes de las diversas hipótesis de cálculo. Para la construcción de los modelos estructurales, se utilizó el software SAP2000, se hizo uso del pórtico lineal y de elementos de placa. Los análisis se realizaron a través de acciones clasificadas como permanentes (D), variables (L) y viento (W “90º” y W “0º”), generando diversas combinaciones e interacciones entre ellas. Las premisas de modelado para el edificio son: estructura - losas/paredes en elementos de placa; fundación - radier con pilotes en uso elementos de placa y barra respectivamente. En el trabajo se abordaron dos tipos de soluciones para fundaciones. En el primer modelo, el soporte de la punta del pilote se considera rígido (no removible), sin interacción de la estructura del suelo. En el segundo, el soporte de la punta de la estaca se considera flexible, con la interacción de la estructura del suelo. Para ambos modelos, la interacción entre el suelo y el radier no se consideró en este estudio. En la representación del soporte flexible, el coeficiente de resorte se obtuvo de un análisis geotécnico de una prueba de carga realizada en el suelo de una ciudad ubicada en el Distrito Federal, Brasil. Al comparar el comportamiento estructural del edificio sobre cimientos con soportes rígidos o elásticos, se observó que, para las mismas combinaciones de acciones aplicadas en los dos modelos, no se verificaron diferencias significativas ni en las tensiones de compresión de las paredes, ni siquiera en los momentos de flexión de las losas. Los valores de los esfuerzos activos, obtenidos por los modelos estructurales, fueron más altos que los esfuerzos resistentes de los bloques de albañilería en algunos puntos cercanos a los extremos, aberturas y encuentros con paredes. Este hecho demostró la necesidad de evaluar cuidadosamente las reuniones de paredes y dónde hay aberturas (ventanas y puertas). Se concluye que las acciones del viento no interfieren significativamente en un edificio de mampostería estructural de 4 pisos. Las diferencias entre las tensiones con cimientos rígidos y elásticos en las paredes, para este caso, son muy pequeñas y no tienen influencia en el diseño. La mayoría de los puntos de máxima tensión se encuentran en las esquinas inferiores de las paredes. Las tensiones de tensión surgen en la mampostería cerca de las aberturas. Por lo tanto, es necesario llenar con lechada y acero los bloques ubicados en las uniones de las paredes y también en los bloques adyacentes a las aberturas (ventanas y puertas). En las partes inferior y superior de las aberturas, es necesario usar dinteles/contrapesos para combatir las tensiones de tensión en la mampostería. Los procedimientos indicados garantizarán una mayor seguridad del edificio debido al aumento en la resistencia de los bloques reforzados por lechada/refuerzo, corroborando los conocimientos técnicos sobre el tema.Este trabalho avalia a influência da rigidez da fundação em um prédio de alvenaria estrutural de quatro pavimentos nas tensões de compressão das paredes. Os resultados foram obtidos a partir de modelos estruturais, levando-se em conta ações verticais e horizontais, fundação rígida e base elástica. O edifício analisado é simétrico nas duas direções e foi desenvolvido para demonstrar, de modo simplificado, o que normalmente ocorre em prédios usuais. Para esse estudo de caso, foram modeladas paredes com e sem aberturas (janelas e portas), com o objetivo de possibilitar a interação e distribuição dos esforços resultantes das várias hipóteses de cálculo. Para a construção dos modelos estruturais foi utilizado o software SAP2000, usando elementos lineares de pórtico e de placas. As análises foram realizadas por meio de ações classificadas em permanentes (D), variáveis (L) e vento (W “90º” e W “0º”), gerando várias combinações e interações entre elas. As premissas de modelagem para o edifício são: estrutura - lajes/paredes em elementos de placas; fundação - radier com estacas sendo utilizados elementos de placas e barras respectivamente. Foram abordados no trabalho dois tipos de solução para as fundações. No primeiro modelo, o apoio da ponta da estaca é considerado rígido (indeslocável), sem interação solo-estrutura. No segundo, o apoio da ponta da estaca é considerado flexível, ocorrendo interação solo-estrutura. Para ambos os modelos, não foi considerado neste estudo a interação do solo com o radier. Na representação do apoio flexível, o coeficiente de mola foi obtido a partir de uma análise geotécnica de uma prova de carga realizada no solo de uma cidade situada no Distrito Federal, Brasil. Comparando o comportamento estrutural do edifício em fundações com apoios rígido ou elástico, observou-se que, para as mesmas combinações de ações aplicadas nos dois modelos, não foram verificadas diferenças significativas nem nas tensões de compressão das paredes, e nem mesmo nos momentos fletores das lajes. Os valores das tensões atuantes, obtidos pelos modelos estruturais, foram superiores à s tensões resistentes dos blocos de alvenaria em alguns pontos próximos as extremidades, aberturas e encontros das paredes. Esse fato comprovou a necessidade de se avaliar criteriosamente os encontros de paredes e onde há aberturas (janelas e portas). Conclui-se que as ações do vento não interferem significativamente em um edifício de alvenaria estrutural de 4 pavimentos. As diferenças entre as tensões com fundação rígida e elástica nas paredes, para este caso, são muito pequenas não tendo influência no dimensionamento. A maioria dos pontos de tensão máxima estão localizados nos cantos inferiores das paredes. Surgem tensões de tração nas alvenarias próximas à s aberturas. Faz-se necessário, portanto, realizar o grauteamento e armação nos blocos situados nos encontros de paredes e também nos blocos contíguos à s aberturas (janelas e portas). Nas partes inferiores e superiores das aberturas se faz necessário a utilização de vergas/contravergas, para combater as tensões de tração na alvenaria. Os procedimentos indicados garantirão maior segurança do edifício em virtude do aumento na resistência dos blocos reforçados por graute/armação, corroborando os entendimentos técnicos sobre o tema.Programa de Pós-graduação em Arquitetura e Urbanismo, Faculdade de Arquitetura e Urbanismo2020-05-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.unb.br/index.php/paranoa/article/view/3045410.18830/issn.1679-0944.n27.2020.02Paranoá; Vol. 13 No. 27 (2020): January/June Edition; 18-36Paranoá; v. 13 n. 27 (2020): Fluxo contínuo - Janeiro/Junho ; 18-361679-09441677-7395reponame:P@ranoáinstname:Universidade de Brasília (UnB)instacron:UNBporhttps://periodicos.unb.br/index.php/paranoa/article/view/30454/26094Copyright (c) 2020 Paranoá: cadernos de arquitetura e urbanismoinfo:eu-repo/semantics/openAccessSouza Bessa, Marco AurélioBorges Farias, CarolineSantos da Silva, Lenildo2024-02-08T14:26:29Zoai:ojs.pkp.sfu.ca:article/30454Revistahttps://periodicos.unb.br/index.php/paranoaPUBhttps://periodicos.unb.br/index.php/paranoa/oaiparanoa@unb.br1679-09441677-7395opendoar:2024-02-08T14:26:29P@ranoá - Universidade de Brasília (UnB)false |
dc.title.none.fl_str_mv |
Efforts of a structural calculated masonry building with a rigid and elastic foundation Esfuerzos de un edificio de albañilería estructural calculado con una fundación rígida y elástica Esforços de um edifício em alvenaria estrutural calculados com fundação rígida e elástica |
title |
Efforts of a structural calculated masonry building with a rigid and elastic foundation |
spellingShingle |
Efforts of a structural calculated masonry building with a rigid and elastic foundation Souza Bessa, Marco Aurélio alvenaria estrutural; apoio rígido; apoio elástico albañilería estructural; soporte rígido; soporte elástico structural masonry; rigid support; elastic support |
title_short |
Efforts of a structural calculated masonry building with a rigid and elastic foundation |
title_full |
Efforts of a structural calculated masonry building with a rigid and elastic foundation |
title_fullStr |
Efforts of a structural calculated masonry building with a rigid and elastic foundation |
title_full_unstemmed |
Efforts of a structural calculated masonry building with a rigid and elastic foundation |
title_sort |
Efforts of a structural calculated masonry building with a rigid and elastic foundation |
author |
Souza Bessa, Marco Aurélio |
author_facet |
Souza Bessa, Marco Aurélio Borges Farias, Caroline Santos da Silva, Lenildo |
author_role |
author |
author2 |
Borges Farias, Caroline Santos da Silva, Lenildo |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Souza Bessa, Marco Aurélio Borges Farias, Caroline Santos da Silva, Lenildo |
dc.subject.por.fl_str_mv |
alvenaria estrutural; apoio rígido; apoio elástico albañilería estructural; soporte rígido; soporte elástico structural masonry; rigid support; elastic support |
topic |
alvenaria estrutural; apoio rígido; apoio elástico albañilería estructural; soporte rígido; soporte elástico structural masonry; rigid support; elastic support |
description |
This work evaluates the influence of the rigidity of the foundation in a four-story structural masonry building on the compressive stresses of the walls. The results were obtained from structural models, taking into account vertical and horizontal actions, rigid foundation and elastic base. The building analyzed is symmetrical in both directions and was developed to demonstrate, in a simplified way, what normally occurs in usual buildings. For this case study, walls with and without openings (windows and doors) were modeled, with the objective of enabling the interaction and distribution of efforts resulting from the various calculation hypotheses. For the construction of the structural models, the SAP2000 software was used, using linear portico and plate elements. The analyzes were carried out through actions classified as permanent (D), variables (L) and wind (W “90º” and W “0º”), generating various combinations and interactions between them. The modeling premises for the building are: structure - slabs/walls in plate elements; foundation - radier with piles being used plate and bar elements respectively. Two types of solution for foundations were addressed in the work. In the first model, the support of the tip of the pile is considered rigid (non-removable), without soil-structure interaction. In the second, the support of the pile tip is considered flexible, with soil-structure interaction occurring. For both models, the interaction between the soil and the radier was not considered in this study. In the representation of flexible support, the spring coefficient was obtained from a geotechnical analysis of a load test performed on the soil of a city located in the Federal District, Brazil. Comparing the structural behavior of the building on foundations with rigid or elastic supports, it was observed that, for the same combinations of actions applied in the two models, no significant differences were verified neither in the compression stresses of the walls, nor even in the bending moments of the slabs. The values ”‹”‹of the active stresses, obtained by the structural models, were superior to the resistant stresses of the masonry blocks in some points close to the ends, openings and meetings of the walls. This fact proved the need to carefully evaluate the meetings of walls and where there are openings (windows and doors). It is concluded that the actions of the wind do not significantly interfere in a 4-story structural masonry building. The differences between the stresses with rigid and elastic foundation on the walls, for this case, are very small and have no influence on the design. Most points of maximum tension are located in the lower corners of the walls. Tensile stresses arise in the masonry near the openings. Therefore, it is necessary to carry out grouting and framing in the blocks located at the wall junctions and also in the blocks adjacent to the openings (windows and doors). In the lower and upper parts of the openings, it is necessary to use lintels/counterweights, to combat tensile stresses in masonry. The indicated procedures will guarantee greater security of the building due to the increase in the strength of the blocks reinforced by grout/reinforcement, corroborating the technical understandings on the subject. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-05-11 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://periodicos.unb.br/index.php/paranoa/article/view/30454 10.18830/issn.1679-0944.n27.2020.02 |
url |
https://periodicos.unb.br/index.php/paranoa/article/view/30454 |
identifier_str_mv |
10.18830/issn.1679-0944.n27.2020.02 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://periodicos.unb.br/index.php/paranoa/article/view/30454/26094 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2020 Paranoá: cadernos de arquitetura e urbanismo info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2020 Paranoá: cadernos de arquitetura e urbanismo |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Programa de Pós-graduação em Arquitetura e Urbanismo, Faculdade de Arquitetura e Urbanismo |
publisher.none.fl_str_mv |
Programa de Pós-graduação em Arquitetura e Urbanismo, Faculdade de Arquitetura e Urbanismo |
dc.source.none.fl_str_mv |
Paranoá; Vol. 13 No. 27 (2020): January/June Edition; 18-36 Paranoá; v. 13 n. 27 (2020): Fluxo contínuo - Janeiro/Junho ; 18-36 1679-0944 1677-7395 reponame:P@ranoá instname:Universidade de Brasília (UnB) instacron:UNB |
instname_str |
Universidade de Brasília (UnB) |
instacron_str |
UNB |
institution |
UNB |
reponame_str |
P@ranoá |
collection |
P@ranoá |
repository.name.fl_str_mv |
P@ranoá - Universidade de Brasília (UnB) |
repository.mail.fl_str_mv |
paranoa@unb.br |
_version_ |
1797066979694084096 |