Sólitons de translação do fluxo da curvatura média harmônica a partir de superfícies máximas
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UnB |
Texto Completo: | https://repositorio.unb.br/handle/10482/38664 |
Resumo: | Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2020. |
id |
UNB_053ed41429745ab3d3f95e91e0af36cc |
---|---|
oai_identifier_str |
oai:repositorio.unb.br:10482/38664 |
network_acronym_str |
UNB |
network_name_str |
Repositório Institucional da UnB |
repository_id_str |
|
spelling |
Sólitons de translação do fluxo da curvatura média harmônica a partir de superfícies máximasFluxos geométricosFluxo da curvatura médiaSólitons de translaçãoSuperfícies máximasSuperfícies isocurvadasSuperfícies anti-isocurvadasCurvaturas de GaussGeometria diferencialDissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2020.No artigo [1], os autores estudam o problema de construir superfícies no semiespaço superior do R3 em que as curvaturas de Gauss induzidas pela métrica euclidiana e pela métrica hiperbólica coincidem. Neste trabalho mostraremos que, se S é uma superfície no semiespaço e K e Kh são as curvaturas de Gauss induzidas pela métrica euclidiana e hiperbólica, respectivamente, então a quantidade K/Kh é invariante por transformações paralelas com relação a métrica hiperbólica. Isso permite interpretar a construção feita em [1] como o estudo de superfícies em que esse invariante é constante positivo. Em [1], os autores também comentam que é possível adaptar a construção para obter superfícies em que esse invariante é constante negativo. Ao longo deste texto, iremos detalhar o processo de construção dessas superfícies a partir de superfícies máximas no espaço de Lorentz. Mostraremos também como usar essa construção para caracterizar localmente todos os sólitons de translação do fluxo da curvatura média harmônica, definido pela seguinte regra {(∂∂tF)⊥=KHNF(⋅,0) = identidade em que a normal ao sóliton não é paralela à direção de translação em nenhum ponto. Por último, iremos mostrar um resultado que permite construir exemplos explícitos desses sólitons através da representação Weierstrass para superfícies máximas no espaço de Lorentz e discutiremos a possibilidade de se obter uma caracterização local completa.In the article [1], the authors study the problem of constructing surfaces in Euclidean half space with the property that the Gaussian curvatures induced by the Euclidean and hyperbolic metrics coincide. In this work, we will show that, if S is a surface in Euclidean half space and K and Kh denote the Gaussian curvatures induced by the Euclidean and hyperbolic metrics, respectively, then the ratio K/Kh is invariant by parallel transformations with respect to the hyperbolic metric. This allows us to interpret the construction made in [1] as surfaces on which this invariant is a positive constant. In [1], the authors also point out that it is possible to adapt the construction to obtain surfaces where this invariant is a negative constant. Throughout this text, we will detail the process of constructing these surfaces starting from maximal surfaces in Lorentz space. Furthermore, we will show how to use that construction to locally characterize all the translating solitons of the harmonic mean curvature flow, defined by the following rule {(∂∂tF)⊥=KHN F(⋅,0) = identidade where the normal to the soliton is not parallel to the translation direction at any point. Finally, we will demonstrate a result that allows the construction of explicit examples of these solitons through the Weierstrass representation for maximal surfaces in Lorentz space and we will discuss the possibility of obtaining a complete local characterization.Instituto de Ciências Exatas (IE)Departamento de Matemática (IE MAT)Programa de Pós-Graduação em MatemáticaRoitman, PedroDutra, Mateus de Andrade Cruz2020-07-01T19:08:49Z2020-07-01T19:08:49Z2020-02-13info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfDUTRA, Mateus de Andrade Cruz. Sólitons de translação do fluxo da curvatura média harmônica a partir de superfícies máximas. 2020. 44 f., il. Dissertação (Mestrado em Matemática)—Universidade de Brasília, Brasília, 2020.https://repositorio.unb.br/handle/10482/38664A concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data.info:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UnBinstname:Universidade de Brasília (UnB)instacron:UNB2024-03-01T16:27:17Zoai:repositorio.unb.br:10482/38664Repositório InstitucionalPUBhttps://repositorio.unb.br/oai/requestrepositorio@unb.bropendoar:2024-03-01T16:27:17Repositório Institucional da UnB - Universidade de Brasília (UnB)false |
dc.title.none.fl_str_mv |
Sólitons de translação do fluxo da curvatura média harmônica a partir de superfícies máximas |
title |
Sólitons de translação do fluxo da curvatura média harmônica a partir de superfícies máximas |
spellingShingle |
Sólitons de translação do fluxo da curvatura média harmônica a partir de superfícies máximas Dutra, Mateus de Andrade Cruz Fluxos geométricos Fluxo da curvatura média Sólitons de translação Superfícies máximas Superfícies isocurvadas Superfícies anti-isocurvadas Curvaturas de Gauss Geometria diferencial |
title_short |
Sólitons de translação do fluxo da curvatura média harmônica a partir de superfícies máximas |
title_full |
Sólitons de translação do fluxo da curvatura média harmônica a partir de superfícies máximas |
title_fullStr |
Sólitons de translação do fluxo da curvatura média harmônica a partir de superfícies máximas |
title_full_unstemmed |
Sólitons de translação do fluxo da curvatura média harmônica a partir de superfícies máximas |
title_sort |
Sólitons de translação do fluxo da curvatura média harmônica a partir de superfícies máximas |
author |
Dutra, Mateus de Andrade Cruz |
author_facet |
Dutra, Mateus de Andrade Cruz |
author_role |
author |
dc.contributor.none.fl_str_mv |
Roitman, Pedro |
dc.contributor.author.fl_str_mv |
Dutra, Mateus de Andrade Cruz |
dc.subject.por.fl_str_mv |
Fluxos geométricos Fluxo da curvatura média Sólitons de translação Superfícies máximas Superfícies isocurvadas Superfícies anti-isocurvadas Curvaturas de Gauss Geometria diferencial |
topic |
Fluxos geométricos Fluxo da curvatura média Sólitons de translação Superfícies máximas Superfícies isocurvadas Superfícies anti-isocurvadas Curvaturas de Gauss Geometria diferencial |
description |
Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2020. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-07-01T19:08:49Z 2020-07-01T19:08:49Z 2020-02-13 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
DUTRA, Mateus de Andrade Cruz. Sólitons de translação do fluxo da curvatura média harmônica a partir de superfícies máximas. 2020. 44 f., il. Dissertação (Mestrado em Matemática)—Universidade de Brasília, Brasília, 2020. https://repositorio.unb.br/handle/10482/38664 |
identifier_str_mv |
DUTRA, Mateus de Andrade Cruz. Sólitons de translação do fluxo da curvatura média harmônica a partir de superfícies máximas. 2020. 44 f., il. Dissertação (Mestrado em Matemática)—Universidade de Brasília, Brasília, 2020. |
url |
https://repositorio.unb.br/handle/10482/38664 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UnB instname:Universidade de Brasília (UnB) instacron:UNB |
instname_str |
Universidade de Brasília (UnB) |
instacron_str |
UNB |
institution |
UNB |
reponame_str |
Repositório Institucional da UnB |
collection |
Repositório Institucional da UnB |
repository.name.fl_str_mv |
Repositório Institucional da UnB - Universidade de Brasília (UnB) |
repository.mail.fl_str_mv |
repositorio@unb.br |
_version_ |
1814508409712541696 |