Mistura espectral : (II) classificadores espectrais para identificação
Autor(a) principal: | |
---|---|
Data de Publicação: | 2003 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Repositório Institucional da UnB |
Texto Completo: | http://repositorio.unb.br/handle/10482/11076 |
Resumo: | O presente trabalho possui como objetivo apresentar uma revisão sobre os métodos desenvolvidos para classificação espectral. Os classificadores espectrais que visam à identificação realizam uma comparação do espectro da imagem (EI) com um espectro de referência (ER), proveniente de bibliotecas espectrais ou de membros finais das imagens. As principais diferenças entre os métodos são basicamente duas: (a) opção do emprego da remoção do contínuo e (b) o critério de similaridade a partir do ajuste linear. A remoção do contínuo tem como propósito enfatizar as feições de absorção a partir da retirada do background utilizando uma função matemática, geralmente, ospline cúbico. Os critérios de similaridade são oriundos da regressão linear e do ajuste por mínimos quadrados sendo assim utilizadas formulações do coeficiente de correlação e do erro padrão. Serão descritos os algoritmos dos principais métodos existentes: Spectral Angle Mapper (SAM), Spectral Feature Fitting (SFF), Spectral CorrelationMapper (SCM) e o coeficiente de determinação utilizado pelo Tricorder e Tetracorder. _________________________________________________________________________________ ABSTRACT |
id |
UNB_058de8968088a39a306786d6891ea2b7 |
---|---|
oai_identifier_str |
oai:repositorio.unb.br:10482/11076 |
network_acronym_str |
UNB |
network_name_str |
Repositório Institucional da UnB |
repository_id_str |
|
spelling |
Mistura espectral : (II) classificadores espectrais para identificaçãoAnálise espectralSensoriamento remotoO presente trabalho possui como objetivo apresentar uma revisão sobre os métodos desenvolvidos para classificação espectral. Os classificadores espectrais que visam à identificação realizam uma comparação do espectro da imagem (EI) com um espectro de referência (ER), proveniente de bibliotecas espectrais ou de membros finais das imagens. As principais diferenças entre os métodos são basicamente duas: (a) opção do emprego da remoção do contínuo e (b) o critério de similaridade a partir do ajuste linear. A remoção do contínuo tem como propósito enfatizar as feições de absorção a partir da retirada do background utilizando uma função matemática, geralmente, ospline cúbico. Os critérios de similaridade são oriundos da regressão linear e do ajuste por mínimos quadrados sendo assim utilizadas formulações do coeficiente de correlação e do erro padrão. Serão descritos os algoritmos dos principais métodos existentes: Spectral Angle Mapper (SAM), Spectral Feature Fitting (SFF), Spectral CorrelationMapper (SCM) e o coeficiente de determinação utilizado pelo Tricorder e Tetracorder. _________________________________________________________________________________ ABSTRACTThis present work has as objective to present a review about the methods developed for spectral classification. The spectral classifiers that focus in the identification perform a comparison of spectrum (EI) of the image with a referencespectrum (ER), obtained from the spectral library or the image endmembers. The maindifferences between these methods are basically two: (a) the option to employ continuum removal, and (b) the similarity criterion based on linear fitting. Continuum removal hasas purpose to emphasize the absorption features from the background removal utilizing a mathematical function, generally, the cubic spline. The similarity criteria are originatedfrom linear regression and by minimum squares fitting so utilizing formulations of thecorrelation coefficient and the standard error. It will be described the algorithms of the main existing methods: Spectral Angle Mapper (SAM), Spectral Feature Fitting (SFF), Spectral Correlation Mapper (SCM), and coefficient of determination utilized by Tricorderand Tetracorder.Programa de Pós-Graduação em Geografia do Departamento de Geografia2012-08-23T14:46:38Z2012-08-23T14:46:38Z2003info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfCARVALHO JÚNIOR, Osmar Abílio de et al. Mistura espectral: (II) classificadores espectrais para identificação. Espaço & Geografia, v. 6, n. 1, p. 175-197, 2003. Disponível em:<http://www.lsie.unb.br/espacoegeografia/index.php/espacoegeografia/article/view/113/111>. Acesso em: 11 jun. 2012.http://repositorio.unb.br/handle/10482/11076Espaço & Geografia está licenciado sob uma licença Creative Commons (Atribuição-Uso não-comercial-Vedada a criação de obras derivadas 3.0 Unported). Fonte: http://www.lsie.unb.br/espacoegeografia/index.php/espacoegeografia/article/view/113/111. Acesso em: 11 jun. 2012.info:eu-repo/semantics/openAccessCarvalho Júnior, Osmar Abílio deCarvalho, Ana Paula Ferreira deGuimarães, Renato FontesMeneses, Paulo RobertoShimabukuro, Yosio Edemirporreponame:Repositório Institucional da UnBinstname:Universidade de Brasília (UnB)instacron:UNB2023-05-27T00:32:49Zoai:repositorio.unb.br:10482/11076Repositório InstitucionalPUBhttps://repositorio.unb.br/oai/requestrepositorio@unb.bropendoar:2023-05-27T00:32:49Repositório Institucional da UnB - Universidade de Brasília (UnB)false |
dc.title.none.fl_str_mv |
Mistura espectral : (II) classificadores espectrais para identificação |
title |
Mistura espectral : (II) classificadores espectrais para identificação |
spellingShingle |
Mistura espectral : (II) classificadores espectrais para identificação Carvalho Júnior, Osmar Abílio de Análise espectral Sensoriamento remoto |
title_short |
Mistura espectral : (II) classificadores espectrais para identificação |
title_full |
Mistura espectral : (II) classificadores espectrais para identificação |
title_fullStr |
Mistura espectral : (II) classificadores espectrais para identificação |
title_full_unstemmed |
Mistura espectral : (II) classificadores espectrais para identificação |
title_sort |
Mistura espectral : (II) classificadores espectrais para identificação |
author |
Carvalho Júnior, Osmar Abílio de |
author_facet |
Carvalho Júnior, Osmar Abílio de Carvalho, Ana Paula Ferreira de Guimarães, Renato Fontes Meneses, Paulo Roberto Shimabukuro, Yosio Edemir |
author_role |
author |
author2 |
Carvalho, Ana Paula Ferreira de Guimarães, Renato Fontes Meneses, Paulo Roberto Shimabukuro, Yosio Edemir |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Carvalho Júnior, Osmar Abílio de Carvalho, Ana Paula Ferreira de Guimarães, Renato Fontes Meneses, Paulo Roberto Shimabukuro, Yosio Edemir |
dc.subject.por.fl_str_mv |
Análise espectral Sensoriamento remoto |
topic |
Análise espectral Sensoriamento remoto |
description |
O presente trabalho possui como objetivo apresentar uma revisão sobre os métodos desenvolvidos para classificação espectral. Os classificadores espectrais que visam à identificação realizam uma comparação do espectro da imagem (EI) com um espectro de referência (ER), proveniente de bibliotecas espectrais ou de membros finais das imagens. As principais diferenças entre os métodos são basicamente duas: (a) opção do emprego da remoção do contínuo e (b) o critério de similaridade a partir do ajuste linear. A remoção do contínuo tem como propósito enfatizar as feições de absorção a partir da retirada do background utilizando uma função matemática, geralmente, ospline cúbico. Os critérios de similaridade são oriundos da regressão linear e do ajuste por mínimos quadrados sendo assim utilizadas formulações do coeficiente de correlação e do erro padrão. Serão descritos os algoritmos dos principais métodos existentes: Spectral Angle Mapper (SAM), Spectral Feature Fitting (SFF), Spectral CorrelationMapper (SCM) e o coeficiente de determinação utilizado pelo Tricorder e Tetracorder. _________________________________________________________________________________ ABSTRACT |
publishDate |
2003 |
dc.date.none.fl_str_mv |
2003 2012-08-23T14:46:38Z 2012-08-23T14:46:38Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
CARVALHO JÚNIOR, Osmar Abílio de et al. Mistura espectral: (II) classificadores espectrais para identificação. Espaço & Geografia, v. 6, n. 1, p. 175-197, 2003. Disponível em:<http://www.lsie.unb.br/espacoegeografia/index.php/espacoegeografia/article/view/113/111>. Acesso em: 11 jun. 2012. http://repositorio.unb.br/handle/10482/11076 |
identifier_str_mv |
CARVALHO JÚNIOR, Osmar Abílio de et al. Mistura espectral: (II) classificadores espectrais para identificação. Espaço & Geografia, v. 6, n. 1, p. 175-197, 2003. Disponível em:<http://www.lsie.unb.br/espacoegeografia/index.php/espacoegeografia/article/view/113/111>. Acesso em: 11 jun. 2012. |
url |
http://repositorio.unb.br/handle/10482/11076 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Programa de Pós-Graduação em Geografia do Departamento de Geografia |
publisher.none.fl_str_mv |
Programa de Pós-Graduação em Geografia do Departamento de Geografia |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UnB instname:Universidade de Brasília (UnB) instacron:UNB |
instname_str |
Universidade de Brasília (UnB) |
instacron_str |
UNB |
institution |
UNB |
reponame_str |
Repositório Institucional da UnB |
collection |
Repositório Institucional da UnB |
repository.name.fl_str_mv |
Repositório Institucional da UnB - Universidade de Brasília (UnB) |
repository.mail.fl_str_mv |
repositorio@unb.br |
_version_ |
1818900891733852160 |