Fourier analysis of nonlinear pendulum oscillations
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UnB |
Texto Completo: | http://repositorio.unb.br/handle/10482/33606 http://dx.doi.org/10.1590/1806-9126-rbef-2017-0151 |
Resumo: | Since the times of Galileo, it is well-known that a simple pendulum oscillates harmonically for any sufficiently small angular amplitude. Beyond this regime and in absence of dissipative forces, the pendulum period increases with amplitude and then it becomes a nonlinear system. Here in this work, we make use of Fourier series to investigate the transition from linear to nonlinear oscillations, which is done by comparing the Fourier coefficient of the fundamental mode (i.e., that for the small-angle regime) to those corresponding to higher frequencies, for angular amplitudes up to 9 0 ∘. Contrarily to some previous works, our results reveal that the pendulum oscillations are not highly anharmonic for all angular amplitudes. This kind of analysis for the pendulum motion is of great pedagogical interest for both theoretical and experimental classes on this theme. |
id |
UNB_4b6ae1b6f5ab4014a1feb962ef8c899f |
---|---|
oai_identifier_str |
oai:repositorio.unb.br:10482/33606 |
network_acronym_str |
UNB |
network_name_str |
Repositório Institucional da UnB |
repository_id_str |
|
spelling |
Fourier analysis of nonlinear pendulum oscillationsPênduloOscilaçõesFourier, Séries deSince the times of Galileo, it is well-known that a simple pendulum oscillates harmonically for any sufficiently small angular amplitude. Beyond this regime and in absence of dissipative forces, the pendulum period increases with amplitude and then it becomes a nonlinear system. Here in this work, we make use of Fourier series to investigate the transition from linear to nonlinear oscillations, which is done by comparing the Fourier coefficient of the fundamental mode (i.e., that for the small-angle regime) to those corresponding to higher frequencies, for angular amplitudes up to 9 0 ∘. Contrarily to some previous works, our results reveal that the pendulum oscillations are not highly anharmonic for all angular amplitudes. This kind of analysis for the pendulum motion is of great pedagogical interest for both theoretical and experimental classes on this theme.Sociedade Brasileira de Física2019-01-02T13:54:43Z2019-01-02T13:54:43Z2018info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfSINGH, Inderpreet; ARUN, Palakkandy; LIMA, Fabio. Fourier analysis of nonlinear pendulum oscillations. Revista Brasileira de Ensino de Física, São Paulo, v. 40, n. 1, e1305, 2018. DOI: http://dx.doi.org/10.1590/1806-9126-rbef-2017-0151. Disponível em: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172018000100405&lng=en&nrm=iso. Acesso em: 11 mar. 2019. Epub July 20, 2017.http://repositorio.unb.br/handle/10482/33606http://dx.doi.org/10.1590/1806-9126-rbef-2017-0151Licença Creative Commons (CC BY)info:eu-repo/semantics/openAccessSingh, InderpreetArun, PalakkandyLima, Fábioengreponame:Repositório Institucional da UnBinstname:Universidade de Brasília (UnB)instacron:UNB2023-05-27T00:19:56Zoai:repositorio.unb.br:10482/33606Repositório InstitucionalPUBhttps://repositorio.unb.br/oai/requestrepositorio@unb.bropendoar:2023-05-27T00:19:56Repositório Institucional da UnB - Universidade de Brasília (UnB)false |
dc.title.none.fl_str_mv |
Fourier analysis of nonlinear pendulum oscillations |
title |
Fourier analysis of nonlinear pendulum oscillations |
spellingShingle |
Fourier analysis of nonlinear pendulum oscillations Singh, Inderpreet Pêndulo Oscilações Fourier, Séries de |
title_short |
Fourier analysis of nonlinear pendulum oscillations |
title_full |
Fourier analysis of nonlinear pendulum oscillations |
title_fullStr |
Fourier analysis of nonlinear pendulum oscillations |
title_full_unstemmed |
Fourier analysis of nonlinear pendulum oscillations |
title_sort |
Fourier analysis of nonlinear pendulum oscillations |
author |
Singh, Inderpreet |
author_facet |
Singh, Inderpreet Arun, Palakkandy Lima, Fábio |
author_role |
author |
author2 |
Arun, Palakkandy Lima, Fábio |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Singh, Inderpreet Arun, Palakkandy Lima, Fábio |
dc.subject.por.fl_str_mv |
Pêndulo Oscilações Fourier, Séries de |
topic |
Pêndulo Oscilações Fourier, Séries de |
description |
Since the times of Galileo, it is well-known that a simple pendulum oscillates harmonically for any sufficiently small angular amplitude. Beyond this regime and in absence of dissipative forces, the pendulum period increases with amplitude and then it becomes a nonlinear system. Here in this work, we make use of Fourier series to investigate the transition from linear to nonlinear oscillations, which is done by comparing the Fourier coefficient of the fundamental mode (i.e., that for the small-angle regime) to those corresponding to higher frequencies, for angular amplitudes up to 9 0 ∘. Contrarily to some previous works, our results reveal that the pendulum oscillations are not highly anharmonic for all angular amplitudes. This kind of analysis for the pendulum motion is of great pedagogical interest for both theoretical and experimental classes on this theme. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018 2019-01-02T13:54:43Z 2019-01-02T13:54:43Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
SINGH, Inderpreet; ARUN, Palakkandy; LIMA, Fabio. Fourier analysis of nonlinear pendulum oscillations. Revista Brasileira de Ensino de Física, São Paulo, v. 40, n. 1, e1305, 2018. DOI: http://dx.doi.org/10.1590/1806-9126-rbef-2017-0151. Disponível em: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172018000100405&lng=en&nrm=iso. Acesso em: 11 mar. 2019. Epub July 20, 2017. http://repositorio.unb.br/handle/10482/33606 http://dx.doi.org/10.1590/1806-9126-rbef-2017-0151 |
identifier_str_mv |
SINGH, Inderpreet; ARUN, Palakkandy; LIMA, Fabio. Fourier analysis of nonlinear pendulum oscillations. Revista Brasileira de Ensino de Física, São Paulo, v. 40, n. 1, e1305, 2018. DOI: http://dx.doi.org/10.1590/1806-9126-rbef-2017-0151. Disponível em: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172018000100405&lng=en&nrm=iso. Acesso em: 11 mar. 2019. Epub July 20, 2017. |
url |
http://repositorio.unb.br/handle/10482/33606 http://dx.doi.org/10.1590/1806-9126-rbef-2017-0151 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
Licença Creative Commons (CC BY) info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Licença Creative Commons (CC BY) |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Física |
publisher.none.fl_str_mv |
Sociedade Brasileira de Física |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UnB instname:Universidade de Brasília (UnB) instacron:UNB |
instname_str |
Universidade de Brasília (UnB) |
instacron_str |
UNB |
institution |
UNB |
reponame_str |
Repositório Institucional da UnB |
collection |
Repositório Institucional da UnB |
repository.name.fl_str_mv |
Repositório Institucional da UnB - Universidade de Brasília (UnB) |
repository.mail.fl_str_mv |
repositorio@unb.br |
_version_ |
1814508347400912896 |