Fourier analysis of nonlinear pendulum oscillations

Detalhes bibliográficos
Autor(a) principal: Singh, Inderpreet
Data de Publicação: 2018
Outros Autores: Arun, Palakkandy, Lima, Fábio
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UnB
Texto Completo: http://repositorio.unb.br/handle/10482/33606
http://dx.doi.org/10.1590/1806-9126-rbef-2017-0151
Resumo: Since the times of Galileo, it is well-known that a simple pendulum oscillates harmonically for any sufficiently small angular amplitude. Beyond this regime and in absence of dissipative forces, the pendulum period increases with amplitude and then it becomes a nonlinear system. Here in this work, we make use of Fourier series to investigate the transition from linear to nonlinear oscillations, which is done by comparing the Fourier coefficient of the fundamental mode (i.e., that for the small-angle regime) to those corresponding to higher frequencies, for angular amplitudes up to 9 0 ∘. Contrarily to some previous works, our results reveal that the pendulum oscillations are not highly anharmonic for all angular amplitudes. This kind of analysis for the pendulum motion is of great pedagogical interest for both theoretical and experimental classes on this theme.
id UNB_4b6ae1b6f5ab4014a1feb962ef8c899f
oai_identifier_str oai:repositorio.unb.br:10482/33606
network_acronym_str UNB
network_name_str Repositório Institucional da UnB
repository_id_str
spelling Fourier analysis of nonlinear pendulum oscillationsPênduloOscilaçõesFourier, Séries deSince the times of Galileo, it is well-known that a simple pendulum oscillates harmonically for any sufficiently small angular amplitude. Beyond this regime and in absence of dissipative forces, the pendulum period increases with amplitude and then it becomes a nonlinear system. Here in this work, we make use of Fourier series to investigate the transition from linear to nonlinear oscillations, which is done by comparing the Fourier coefficient of the fundamental mode (i.e., that for the small-angle regime) to those corresponding to higher frequencies, for angular amplitudes up to 9 0 ∘. Contrarily to some previous works, our results reveal that the pendulum oscillations are not highly anharmonic for all angular amplitudes. This kind of analysis for the pendulum motion is of great pedagogical interest for both theoretical and experimental classes on this theme.Sociedade Brasileira de Física2019-01-02T13:54:43Z2019-01-02T13:54:43Z2018info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfSINGH, Inderpreet; ARUN, Palakkandy; LIMA, Fabio. Fourier analysis of nonlinear pendulum oscillations. Revista Brasileira de Ensino de Física, São Paulo, v. 40, n. 1, e1305, 2018. DOI: http://dx.doi.org/10.1590/1806-9126-rbef-2017-0151. Disponível em: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172018000100405&lng=en&nrm=iso. Acesso em: 11 mar. 2019. Epub July 20, 2017.http://repositorio.unb.br/handle/10482/33606http://dx.doi.org/10.1590/1806-9126-rbef-2017-0151Licença Creative Commons (CC BY)info:eu-repo/semantics/openAccessSingh, InderpreetArun, PalakkandyLima, Fábioengreponame:Repositório Institucional da UnBinstname:Universidade de Brasília (UnB)instacron:UNB2023-05-27T00:19:56Zoai:repositorio.unb.br:10482/33606Repositório InstitucionalPUBhttps://repositorio.unb.br/oai/requestrepositorio@unb.bropendoar:2023-05-27T00:19:56Repositório Institucional da UnB - Universidade de Brasília (UnB)false
dc.title.none.fl_str_mv Fourier analysis of nonlinear pendulum oscillations
title Fourier analysis of nonlinear pendulum oscillations
spellingShingle Fourier analysis of nonlinear pendulum oscillations
Singh, Inderpreet
Pêndulo
Oscilações
Fourier, Séries de
title_short Fourier analysis of nonlinear pendulum oscillations
title_full Fourier analysis of nonlinear pendulum oscillations
title_fullStr Fourier analysis of nonlinear pendulum oscillations
title_full_unstemmed Fourier analysis of nonlinear pendulum oscillations
title_sort Fourier analysis of nonlinear pendulum oscillations
author Singh, Inderpreet
author_facet Singh, Inderpreet
Arun, Palakkandy
Lima, Fábio
author_role author
author2 Arun, Palakkandy
Lima, Fábio
author2_role author
author
dc.contributor.author.fl_str_mv Singh, Inderpreet
Arun, Palakkandy
Lima, Fábio
dc.subject.por.fl_str_mv Pêndulo
Oscilações
Fourier, Séries de
topic Pêndulo
Oscilações
Fourier, Séries de
description Since the times of Galileo, it is well-known that a simple pendulum oscillates harmonically for any sufficiently small angular amplitude. Beyond this regime and in absence of dissipative forces, the pendulum period increases with amplitude and then it becomes a nonlinear system. Here in this work, we make use of Fourier series to investigate the transition from linear to nonlinear oscillations, which is done by comparing the Fourier coefficient of the fundamental mode (i.e., that for the small-angle regime) to those corresponding to higher frequencies, for angular amplitudes up to 9 0 ∘. Contrarily to some previous works, our results reveal that the pendulum oscillations are not highly anharmonic for all angular amplitudes. This kind of analysis for the pendulum motion is of great pedagogical interest for both theoretical and experimental classes on this theme.
publishDate 2018
dc.date.none.fl_str_mv 2018
2019-01-02T13:54:43Z
2019-01-02T13:54:43Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv SINGH, Inderpreet; ARUN, Palakkandy; LIMA, Fabio. Fourier analysis of nonlinear pendulum oscillations. Revista Brasileira de Ensino de Física, São Paulo, v. 40, n. 1, e1305, 2018. DOI: http://dx.doi.org/10.1590/1806-9126-rbef-2017-0151. Disponível em: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172018000100405&lng=en&nrm=iso. Acesso em: 11 mar. 2019. Epub July 20, 2017.
http://repositorio.unb.br/handle/10482/33606
http://dx.doi.org/10.1590/1806-9126-rbef-2017-0151
identifier_str_mv SINGH, Inderpreet; ARUN, Palakkandy; LIMA, Fabio. Fourier analysis of nonlinear pendulum oscillations. Revista Brasileira de Ensino de Física, São Paulo, v. 40, n. 1, e1305, 2018. DOI: http://dx.doi.org/10.1590/1806-9126-rbef-2017-0151. Disponível em: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172018000100405&lng=en&nrm=iso. Acesso em: 11 mar. 2019. Epub July 20, 2017.
url http://repositorio.unb.br/handle/10482/33606
http://dx.doi.org/10.1590/1806-9126-rbef-2017-0151
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Licença Creative Commons (CC BY)
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Licença Creative Commons (CC BY)
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Sociedade Brasileira de Física
publisher.none.fl_str_mv Sociedade Brasileira de Física
dc.source.none.fl_str_mv reponame:Repositório Institucional da UnB
instname:Universidade de Brasília (UnB)
instacron:UNB
instname_str Universidade de Brasília (UnB)
instacron_str UNB
institution UNB
reponame_str Repositório Institucional da UnB
collection Repositório Institucional da UnB
repository.name.fl_str_mv Repositório Institucional da UnB - Universidade de Brasília (UnB)
repository.mail.fl_str_mv repositorio@unb.br
_version_ 1814508347400912896