The EM algorithm for standard stochastic frontier models
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UnB |
Texto Completo: | https://repositorio.unb.br/handle/10482/36305 https://doi.org/10.1590/0101-7438.2019.039.03.0361 http://orcid.org/0000-0003-4688-9733 |
Resumo: | The Expectation-Maximization (EM) algorithm is developed for the stochastic frontier models most used in practice with cross-section data. The resulting algorithms can be easily programmed into a computer and are shown to be worthy alternatives to general-purpose optimization routines currently used. The algorithms for the half normal and the exponential models have closed-form expressions whereas those for the truncated normal and gamma models will require the numerical solution of a nonlinear equation. Implementations of the EM algorithm either as a stand-alone routine or in accelerated form and also combined with Newton-like methods are discussed. We provide illustrations, along with R tools, for cost and production frontiers. |
id |
UNB_6725f9f150c0652e7c6642e8c14db0f4 |
---|---|
oai_identifier_str |
oai:repositorio.unb.br:10482/36305 |
network_acronym_str |
UNB |
network_name_str |
Repositório Institucional da UnB |
repository_id_str |
|
spelling |
The EM algorithm for standard stochastic frontier modelsEficiênciaAceleração EMProbabilidadesAlgoritmosThe Expectation-Maximization (EM) algorithm is developed for the stochastic frontier models most used in practice with cross-section data. The resulting algorithms can be easily programmed into a computer and are shown to be worthy alternatives to general-purpose optimization routines currently used. The algorithms for the half normal and the exponential models have closed-form expressions whereas those for the truncated normal and gamma models will require the numerical solution of a nonlinear equation. Implementations of the EM algorithm either as a stand-alone routine or in accelerated form and also combined with Newton-like methods are discussed. We provide illustrations, along with R tools, for cost and production frontiers.Sociedade Brasileira de Pesquisa Operacional2020-01-24T10:30:12Z2020-01-24T10:30:12Z2019info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfANDRADE, Bernardo B. de; SOUZA, Geraldo S. The EM algorithm for standard stochastic frontier models. Pesquisa Operacional, v. 39, n. 3, p. 361-378, 2019. DOI: https://doi.org/10.1590/0101-7438.2019.039.03.0361. Disponível em: http://scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382019000300361. Acesso em: 23 jan. 2020.https://repositorio.unb.br/handle/10482/36305https://doi.org/10.1590/0101-7438.2019.039.03.0361http://orcid.org/0000-0003-4688-9733(CC BY) - © 2019 Brazilian Operations Research Societyinfo:eu-repo/semantics/openAccessAndrade, Bernardo Borba deSouza, Geraldo da Silva eengreponame:Repositório Institucional da UnBinstname:Universidade de Brasília (UnB)instacron:UNB2023-05-27T00:14:15Zoai:repositorio.unb.br:10482/36305Repositório InstitucionalPUBhttps://repositorio.unb.br/oai/requestrepositorio@unb.bropendoar:2023-05-27T00:14:15Repositório Institucional da UnB - Universidade de Brasília (UnB)false |
dc.title.none.fl_str_mv |
The EM algorithm for standard stochastic frontier models |
title |
The EM algorithm for standard stochastic frontier models |
spellingShingle |
The EM algorithm for standard stochastic frontier models Andrade, Bernardo Borba de Eficiência Aceleração EM Probabilidades Algoritmos |
title_short |
The EM algorithm for standard stochastic frontier models |
title_full |
The EM algorithm for standard stochastic frontier models |
title_fullStr |
The EM algorithm for standard stochastic frontier models |
title_full_unstemmed |
The EM algorithm for standard stochastic frontier models |
title_sort |
The EM algorithm for standard stochastic frontier models |
author |
Andrade, Bernardo Borba de |
author_facet |
Andrade, Bernardo Borba de Souza, Geraldo da Silva e |
author_role |
author |
author2 |
Souza, Geraldo da Silva e |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Andrade, Bernardo Borba de Souza, Geraldo da Silva e |
dc.subject.por.fl_str_mv |
Eficiência Aceleração EM Probabilidades Algoritmos |
topic |
Eficiência Aceleração EM Probabilidades Algoritmos |
description |
The Expectation-Maximization (EM) algorithm is developed for the stochastic frontier models most used in practice with cross-section data. The resulting algorithms can be easily programmed into a computer and are shown to be worthy alternatives to general-purpose optimization routines currently used. The algorithms for the half normal and the exponential models have closed-form expressions whereas those for the truncated normal and gamma models will require the numerical solution of a nonlinear equation. Implementations of the EM algorithm either as a stand-alone routine or in accelerated form and also combined with Newton-like methods are discussed. We provide illustrations, along with R tools, for cost and production frontiers. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019 2020-01-24T10:30:12Z 2020-01-24T10:30:12Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
ANDRADE, Bernardo B. de; SOUZA, Geraldo S. The EM algorithm for standard stochastic frontier models. Pesquisa Operacional, v. 39, n. 3, p. 361-378, 2019. DOI: https://doi.org/10.1590/0101-7438.2019.039.03.0361. Disponível em: http://scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382019000300361. Acesso em: 23 jan. 2020. https://repositorio.unb.br/handle/10482/36305 https://doi.org/10.1590/0101-7438.2019.039.03.0361 http://orcid.org/0000-0003-4688-9733 |
identifier_str_mv |
ANDRADE, Bernardo B. de; SOUZA, Geraldo S. The EM algorithm for standard stochastic frontier models. Pesquisa Operacional, v. 39, n. 3, p. 361-378, 2019. DOI: https://doi.org/10.1590/0101-7438.2019.039.03.0361. Disponível em: http://scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382019000300361. Acesso em: 23 jan. 2020. |
url |
https://repositorio.unb.br/handle/10482/36305 https://doi.org/10.1590/0101-7438.2019.039.03.0361 http://orcid.org/0000-0003-4688-9733 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
(CC BY) - © 2019 Brazilian Operations Research Society info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
(CC BY) - © 2019 Brazilian Operations Research Society |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Pesquisa Operacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Pesquisa Operacional |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UnB instname:Universidade de Brasília (UnB) instacron:UNB |
instname_str |
Universidade de Brasília (UnB) |
instacron_str |
UNB |
institution |
UNB |
reponame_str |
Repositório Institucional da UnB |
collection |
Repositório Institucional da UnB |
repository.name.fl_str_mv |
Repositório Institucional da UnB - Universidade de Brasília (UnB) |
repository.mail.fl_str_mv |
repositorio@unb.br |
_version_ |
1814508213387657216 |