The EM algorithm for standard stochastic frontier models

Detalhes bibliográficos
Autor(a) principal: Andrade, Bernardo Borba de
Data de Publicação: 2019
Outros Autores: Souza, Geraldo da Silva e
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UnB
Texto Completo: https://repositorio.unb.br/handle/10482/36305
https://doi.org/10.1590/0101-7438.2019.039.03.0361
http://orcid.org/0000-0003-4688-9733
Resumo: The Expectation-Maximization (EM) algorithm is developed for the stochastic frontier models most used in practice with cross-section data. The resulting algorithms can be easily programmed into a computer and are shown to be worthy alternatives to general-purpose optimization routines currently used. The algorithms for the half normal and the exponential models have closed-form expressions whereas those for the truncated normal and gamma models will require the numerical solution of a nonlinear equation. Implementations of the EM algorithm either as a stand-alone routine or in accelerated form and also combined with Newton-like methods are discussed. We provide illustrations, along with R tools, for cost and production frontiers.
id UNB_6725f9f150c0652e7c6642e8c14db0f4
oai_identifier_str oai:repositorio.unb.br:10482/36305
network_acronym_str UNB
network_name_str Repositório Institucional da UnB
repository_id_str
spelling The EM algorithm for standard stochastic frontier modelsEficiênciaAceleração EMProbabilidadesAlgoritmosThe Expectation-Maximization (EM) algorithm is developed for the stochastic frontier models most used in practice with cross-section data. The resulting algorithms can be easily programmed into a computer and are shown to be worthy alternatives to general-purpose optimization routines currently used. The algorithms for the half normal and the exponential models have closed-form expressions whereas those for the truncated normal and gamma models will require the numerical solution of a nonlinear equation. Implementations of the EM algorithm either as a stand-alone routine or in accelerated form and also combined with Newton-like methods are discussed. We provide illustrations, along with R tools, for cost and production frontiers.Sociedade Brasileira de Pesquisa Operacional2020-01-24T10:30:12Z2020-01-24T10:30:12Z2019info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfANDRADE, Bernardo B. de; SOUZA, Geraldo S. The EM algorithm for standard stochastic frontier models. Pesquisa Operacional, v. 39, n. 3, p. 361-378, 2019. DOI: https://doi.org/10.1590/0101-7438.2019.039.03.0361. Disponível em: http://scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382019000300361. Acesso em: 23 jan. 2020.https://repositorio.unb.br/handle/10482/36305https://doi.org/10.1590/0101-7438.2019.039.03.0361http://orcid.org/0000-0003-4688-9733(CC BY) - © 2019 Brazilian Operations Research Societyinfo:eu-repo/semantics/openAccessAndrade, Bernardo Borba deSouza, Geraldo da Silva eengreponame:Repositório Institucional da UnBinstname:Universidade de Brasília (UnB)instacron:UNB2023-05-27T00:14:15Zoai:repositorio.unb.br:10482/36305Repositório InstitucionalPUBhttps://repositorio.unb.br/oai/requestrepositorio@unb.bropendoar:2023-05-27T00:14:15Repositório Institucional da UnB - Universidade de Brasília (UnB)false
dc.title.none.fl_str_mv The EM algorithm for standard stochastic frontier models
title The EM algorithm for standard stochastic frontier models
spellingShingle The EM algorithm for standard stochastic frontier models
Andrade, Bernardo Borba de
Eficiência
Aceleração EM
Probabilidades
Algoritmos
title_short The EM algorithm for standard stochastic frontier models
title_full The EM algorithm for standard stochastic frontier models
title_fullStr The EM algorithm for standard stochastic frontier models
title_full_unstemmed The EM algorithm for standard stochastic frontier models
title_sort The EM algorithm for standard stochastic frontier models
author Andrade, Bernardo Borba de
author_facet Andrade, Bernardo Borba de
Souza, Geraldo da Silva e
author_role author
author2 Souza, Geraldo da Silva e
author2_role author
dc.contributor.author.fl_str_mv Andrade, Bernardo Borba de
Souza, Geraldo da Silva e
dc.subject.por.fl_str_mv Eficiência
Aceleração EM
Probabilidades
Algoritmos
topic Eficiência
Aceleração EM
Probabilidades
Algoritmos
description The Expectation-Maximization (EM) algorithm is developed for the stochastic frontier models most used in practice with cross-section data. The resulting algorithms can be easily programmed into a computer and are shown to be worthy alternatives to general-purpose optimization routines currently used. The algorithms for the half normal and the exponential models have closed-form expressions whereas those for the truncated normal and gamma models will require the numerical solution of a nonlinear equation. Implementations of the EM algorithm either as a stand-alone routine or in accelerated form and also combined with Newton-like methods are discussed. We provide illustrations, along with R tools, for cost and production frontiers.
publishDate 2019
dc.date.none.fl_str_mv 2019
2020-01-24T10:30:12Z
2020-01-24T10:30:12Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv ANDRADE, Bernardo B. de; SOUZA, Geraldo S. The EM algorithm for standard stochastic frontier models. Pesquisa Operacional, v. 39, n. 3, p. 361-378, 2019. DOI: https://doi.org/10.1590/0101-7438.2019.039.03.0361. Disponível em: http://scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382019000300361. Acesso em: 23 jan. 2020.
https://repositorio.unb.br/handle/10482/36305
https://doi.org/10.1590/0101-7438.2019.039.03.0361
http://orcid.org/0000-0003-4688-9733
identifier_str_mv ANDRADE, Bernardo B. de; SOUZA, Geraldo S. The EM algorithm for standard stochastic frontier models. Pesquisa Operacional, v. 39, n. 3, p. 361-378, 2019. DOI: https://doi.org/10.1590/0101-7438.2019.039.03.0361. Disponível em: http://scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382019000300361. Acesso em: 23 jan. 2020.
url https://repositorio.unb.br/handle/10482/36305
https://doi.org/10.1590/0101-7438.2019.039.03.0361
http://orcid.org/0000-0003-4688-9733
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv (CC BY) - © 2019 Brazilian Operations Research Society
info:eu-repo/semantics/openAccess
rights_invalid_str_mv (CC BY) - © 2019 Brazilian Operations Research Society
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Sociedade Brasileira de Pesquisa Operacional
publisher.none.fl_str_mv Sociedade Brasileira de Pesquisa Operacional
dc.source.none.fl_str_mv reponame:Repositório Institucional da UnB
instname:Universidade de Brasília (UnB)
instacron:UNB
instname_str Universidade de Brasília (UnB)
instacron_str UNB
institution UNB
reponame_str Repositório Institucional da UnB
collection Repositório Institucional da UnB
repository.name.fl_str_mv Repositório Institucional da UnB - Universidade de Brasília (UnB)
repository.mail.fl_str_mv repositorio@unb.br
_version_ 1814508213387657216