Modelos lineares mistos : uma abordagem bayesiana
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UnB |
Texto Completo: | http://repositorio.unb.br/handle/10482/31708 |
Resumo: | Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Estatística, 2017. |
id |
UNB_eec8928fb09cff03f4e97a039fc195a5 |
---|---|
oai_identifier_str |
oai:repositorio.unb.br:10482/31708 |
network_acronym_str |
UNB |
network_name_str |
Repositório Institucional da UnB |
repository_id_str |
|
spelling |
Modelos lineares mistos : uma abordagem bayesianaRegressão multinívelModelos lineares (Estatística)Inferência bayesianaRegressão linear hierárquicaDissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Estatística, 2017.Estudos em que a população de interesse possui estrutura hierárquica ou mul tinível são cada vez mais frequentes nas áreas de educação e saúde, onde, por exemplo, tem-se o desejo de avaliar determinada característica de alunos dentro de escolas ou pacientes dentro de hospitais. Nessa situação, modelos hierárquicos são mais adequados do que modelos que não levam em consideração a hierarquia. Esses modelos incorporam a estrutura de dependência dos dados, tornando as estimativas mais realistas e não viesadas. Esses modelos fazem parte da classe de modelos mistos, que possui efeitos fixos e mais de um efeito aleatório em sua composição. Este trabalho apresenta aplicações do modelo de regressão linear hierárquica, utilizando a abordagem bayesiana para estimação dos parâmetros. Concluiu-se que esses modelos apresentam ganhos expressivos nas estimativas intervalares dos parâmetros, sem desrespeitar os pressupostos teóricos de um modelo mais simples, proporcionando estimativas não viesadas.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).Studies in which the population of interest has a multilevel or hierarchical structure are increasingly frequent in the areas of education and health, when one has the desire to evaluate a certain characteristic of students clustered within schools or patients clustered within hospitals. In this situation, hierarchical models are more appropriate than models that do not take hierarchy into account. These models incorporate data dependency structure, making estimates more realistic and unbiased. These models are also called mixed models, containing both fixed effects and more than one random effect in its composition. This work presents applications of the linear hierarchical regression model, using bayesian methods of estimation. It was concluded that these models present expressive gains in the interval estimates of the parameters, without disrespecting the assumptions of a simpler model, providing unbiased estimates.Instituto de Ciências Exatas (IE)Departamento de Estatística (IE EST)Programa de Pós-Graduação em EstatísticaNakano, Eduardo YoshioRocha, Alex Luiz Martins Matheus da2018-04-20T19:39:37Z2018-04-20T19:39:37Z2018-04-202017-12-04info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfROCHA, Alex Luiz Martins Matheus da. Modelos lineares mistos: uma abordagem bayesiana. 2017. viii, 49 f., il. Dissertação (Mestrado em Estatística)—Universidade de Brasília, Brasília, 2017.http://repositorio.unb.br/handle/10482/31708A concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data.info:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UnBinstname:Universidade de Brasília (UnB)instacron:UNB2024-03-01T16:22:33Zoai:repositorio.unb.br:10482/31708Repositório InstitucionalPUBhttps://repositorio.unb.br/oai/requestrepositorio@unb.bropendoar:2024-03-01T16:22:33Repositório Institucional da UnB - Universidade de Brasília (UnB)false |
dc.title.none.fl_str_mv |
Modelos lineares mistos : uma abordagem bayesiana |
title |
Modelos lineares mistos : uma abordagem bayesiana |
spellingShingle |
Modelos lineares mistos : uma abordagem bayesiana Rocha, Alex Luiz Martins Matheus da Regressão multinível Modelos lineares (Estatística) Inferência bayesiana Regressão linear hierárquica |
title_short |
Modelos lineares mistos : uma abordagem bayesiana |
title_full |
Modelos lineares mistos : uma abordagem bayesiana |
title_fullStr |
Modelos lineares mistos : uma abordagem bayesiana |
title_full_unstemmed |
Modelos lineares mistos : uma abordagem bayesiana |
title_sort |
Modelos lineares mistos : uma abordagem bayesiana |
author |
Rocha, Alex Luiz Martins Matheus da |
author_facet |
Rocha, Alex Luiz Martins Matheus da |
author_role |
author |
dc.contributor.none.fl_str_mv |
Nakano, Eduardo Yoshio |
dc.contributor.author.fl_str_mv |
Rocha, Alex Luiz Martins Matheus da |
dc.subject.por.fl_str_mv |
Regressão multinível Modelos lineares (Estatística) Inferência bayesiana Regressão linear hierárquica |
topic |
Regressão multinível Modelos lineares (Estatística) Inferência bayesiana Regressão linear hierárquica |
description |
Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Estatística, 2017. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-12-04 2018-04-20T19:39:37Z 2018-04-20T19:39:37Z 2018-04-20 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
ROCHA, Alex Luiz Martins Matheus da. Modelos lineares mistos: uma abordagem bayesiana. 2017. viii, 49 f., il. Dissertação (Mestrado em Estatística)—Universidade de Brasília, Brasília, 2017. http://repositorio.unb.br/handle/10482/31708 |
identifier_str_mv |
ROCHA, Alex Luiz Martins Matheus da. Modelos lineares mistos: uma abordagem bayesiana. 2017. viii, 49 f., il. Dissertação (Mestrado em Estatística)—Universidade de Brasília, Brasília, 2017. |
url |
http://repositorio.unb.br/handle/10482/31708 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UnB instname:Universidade de Brasília (UnB) instacron:UNB |
instname_str |
Universidade de Brasília (UnB) |
instacron_str |
UNB |
institution |
UNB |
reponame_str |
Repositório Institucional da UnB |
collection |
Repositório Institucional da UnB |
repository.name.fl_str_mv |
Repositório Institucional da UnB - Universidade de Brasília (UnB) |
repository.mail.fl_str_mv |
repositorio@unb.br |
_version_ |
1818900849516085248 |