Considerations on experimental planning and suitability of using statistical tests in Agricultural Sciences
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Diversitas Journal |
Texto Completo: | https://diversitasjournal.com.br/diversitas_journal/article/view/1931 |
Resumo: | In scientific research, planning and carrying out experiments are common practices in Agricultural Sciences. Although the experimental methods are widely known, it is clear that their assumptions are often not verified, reflecting the low precision and quality of the results. This research aims to: 1) discuss basic concepts of experimental statistics; 2) present the main statistical models and methods used in Agricultural Sciences; 3) evaluate the suitability of using statistical tests in scientific articles. In planning, the choice of design should consider environmental heterogeneity. Hypotheses are tested by the F test, and Anova's assumptions must be met. Data transformation is an efficient tool that is often necessary but little explored. When testing qualitative treatments, a comparison/grouping of means test is used, with the Scott-Knott test being the most robust. When quantitative, linear regression. When successive evaluations are carried out in the same experimental unit, repeated measures analysis is used. The coefficient of variation indicates experimental precision and varies with treatments, variables and environment. The repeatability coefficient estimates the number of evaluations and experiments to be carried out, with a high degree of precision. As for suitability, 32 articles were analyzed and all presented insufficient information on the methodology, compromising the reproducibility of the research. Therefore, experimental planning allows conducting research with savings in time, costs and labor, without compromising the accuracy of the conclusions |
id |
UNEAL_7dbe2c90806e975f814624d34aeac320 |
---|---|
oai_identifier_str |
oai:ojs.emnuvens.com.br:article/1931 |
network_acronym_str |
UNEAL |
network_name_str |
Diversitas Journal |
repository_id_str |
|
spelling |
Considerations on experimental planning and suitability of using statistical tests in Agricultural SciencesConsiderações sobre planejamento experimental e adequabilidade do uso de testes estatísticos em Ciências AgráriasIn scientific research, planning and carrying out experiments are common practices in Agricultural Sciences. Although the experimental methods are widely known, it is clear that their assumptions are often not verified, reflecting the low precision and quality of the results. This research aims to: 1) discuss basic concepts of experimental statistics; 2) present the main statistical models and methods used in Agricultural Sciences; 3) evaluate the suitability of using statistical tests in scientific articles. In planning, the choice of design should consider environmental heterogeneity. Hypotheses are tested by the F test, and Anova's assumptions must be met. Data transformation is an efficient tool that is often necessary but little explored. When testing qualitative treatments, a comparison/grouping of means test is used, with the Scott-Knott test being the most robust. When quantitative, linear regression. When successive evaluations are carried out in the same experimental unit, repeated measures analysis is used. The coefficient of variation indicates experimental precision and varies with treatments, variables and environment. The repeatability coefficient estimates the number of evaluations and experiments to be carried out, with a high degree of precision. As for suitability, 32 articles were analyzed and all presented insufficient information on the methodology, compromising the reproducibility of the research. Therefore, experimental planning allows conducting research with savings in time, costs and labor, without compromising the accuracy of the conclusionsRESUMO: Na pesquisa científica, o planejamento e execução de experimentos consistem em práticas comuns nas Ciências Agrárias. Apesar de os métodos experimentais serem amplamente conhecidos, percebe-se que, muitas vezes, suas pressuposições não são verificadas, refletindo em baixa precisão e qualidade dos resultados. Esta pesquisa objetiva, por meio de uma revisão de literatura: 1) discutir conceitos básicos da estatística experimental; e 2) apresentar os principais modelos e métodos estatísticos utilizados em Ciências Agrárias. Foi executado um levantamento bibliográfico, por meio de publicações de livros e artigos científicos obtidos nas bases de dados Periódicos Capes, SciELO, Scopus e Google Scholar. No planejamento experimental, a escolha do delineamento deverá considerar a heterogeneidade ambiental. Antes de testar a hipótese científica, deve-se testar as pressuposições da Anova. A transformação de dados é uma ferramenta eficiente, muitas vezes, necessária, mas pouco explorada. Ao se testar tratamentos qualitativos, utiliza-se teste de comparação/agrupamento de médias, sendo o teste Scott-Knott o mais robusto. Quando quantitativo, regressão linear. Quando avaliações sucessivas são realizadas na mesma unidade experimental, utiliza-se a análise de medidas repetidas. O coeficiente de variação indica a precisão experimental e varia com os tratamentos, variáveis e ambiente. O coeficiente de repetibilidade estima o número de avaliações e de experimentos a serem realizados, com alto grau de precisão. O planejamento experimental permite economia de tempo, custos e mão de obra, sem comprometer a precisão das conclusões. PALAVRAS-CHAVE: Erro Experimental, Reprodutibilidade, Anova, Precisão. ABSTRACT: In scientific research, planning and carrying out experiments are common practices in Agricultural Sciences. Although the experimental methods are widely known, it is clear that their assumptions are often not verified, reflecting the low precision and quality of the results. This research aims, through a literature review: 1) discuss basic concepts of experimental statistics; and 2) present the main statistical models and methods used in Agricultural Sciences. A bibliographic survey was carried out through publications of books and scientific articles obtained from the Capes Periodicals, SciELO, Scopus and Google Scholar databases. In planning, the choice of design should consider environmental heterogeneity. Before testing the scientific hypothesis, one must test the Anova assumptions. Data transformation is an efficient tool that is often necessary but little explored. When testing qualitative treatments, a comparison/grouping of means test is used, with the Scott-Knott test being the most robust. When quantitative, linear regression. When successive evaluations are carried out in the same experimental unit, repeated measures analysis is used. The coefficient of variation indicates experimental precision and varies with treatments, variables and environment. The repeatability coefficient estimates the number of evaluations and experiments to be carried out, with a high degree of precision. Experimental planning saves time, costs and labor without compromising the accuracy of conclusions. KEYWORDS: Experimental Error, Reproductivity, Anova, Precision.Universidade Estadual de Alagoas - Eduneal2021-10-19info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://diversitasjournal.com.br/diversitas_journal/article/view/193110.48017/dj.v6i4.1931Diversitas Journal; v. 6 n. 4 (2021): Realidades da educação na Pandemia Sars-Covid 19 ; 3706-37232525-521510.48017/dj.v6i4reponame:Diversitas Journalinstname:Universidade Estadual de Alagoas (UNEAL)instacron:UNEALporhttps://diversitasjournal.com.br/diversitas_journal/article/view/1931/1486Copyright (c) 2021 Marcelo Cavalcante, João Gomes Costahttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessCavalcante, MarceloCosta, João Gomes da2021-10-24T16:50:32Zoai:ojs.emnuvens.com.br:article/1931Revistahttps://diversitasjournal.com.br/diversitas_journal/indexPUBhttps://www.e-publicacoes.uerj.br/index.php/muralinternacional/oairevistadiversitasjournal@gmail.com2525-52152525-5215opendoar:2023-01-13T09:47:25.256661Diversitas Journal - Universidade Estadual de Alagoas (UNEAL)false |
dc.title.none.fl_str_mv |
Considerations on experimental planning and suitability of using statistical tests in Agricultural Sciences Considerações sobre planejamento experimental e adequabilidade do uso de testes estatísticos em Ciências Agrárias |
title |
Considerations on experimental planning and suitability of using statistical tests in Agricultural Sciences |
spellingShingle |
Considerations on experimental planning and suitability of using statistical tests in Agricultural Sciences Cavalcante, Marcelo |
title_short |
Considerations on experimental planning and suitability of using statistical tests in Agricultural Sciences |
title_full |
Considerations on experimental planning and suitability of using statistical tests in Agricultural Sciences |
title_fullStr |
Considerations on experimental planning and suitability of using statistical tests in Agricultural Sciences |
title_full_unstemmed |
Considerations on experimental planning and suitability of using statistical tests in Agricultural Sciences |
title_sort |
Considerations on experimental planning and suitability of using statistical tests in Agricultural Sciences |
author |
Cavalcante, Marcelo |
author_facet |
Cavalcante, Marcelo Costa, João Gomes da |
author_role |
author |
author2 |
Costa, João Gomes da |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Cavalcante, Marcelo Costa, João Gomes da |
description |
In scientific research, planning and carrying out experiments are common practices in Agricultural Sciences. Although the experimental methods are widely known, it is clear that their assumptions are often not verified, reflecting the low precision and quality of the results. This research aims to: 1) discuss basic concepts of experimental statistics; 2) present the main statistical models and methods used in Agricultural Sciences; 3) evaluate the suitability of using statistical tests in scientific articles. In planning, the choice of design should consider environmental heterogeneity. Hypotheses are tested by the F test, and Anova's assumptions must be met. Data transformation is an efficient tool that is often necessary but little explored. When testing qualitative treatments, a comparison/grouping of means test is used, with the Scott-Knott test being the most robust. When quantitative, linear regression. When successive evaluations are carried out in the same experimental unit, repeated measures analysis is used. The coefficient of variation indicates experimental precision and varies with treatments, variables and environment. The repeatability coefficient estimates the number of evaluations and experiments to be carried out, with a high degree of precision. As for suitability, 32 articles were analyzed and all presented insufficient information on the methodology, compromising the reproducibility of the research. Therefore, experimental planning allows conducting research with savings in time, costs and labor, without compromising the accuracy of the conclusions |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-10-19 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://diversitasjournal.com.br/diversitas_journal/article/view/1931 10.48017/dj.v6i4.1931 |
url |
https://diversitasjournal.com.br/diversitas_journal/article/view/1931 |
identifier_str_mv |
10.48017/dj.v6i4.1931 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://diversitasjournal.com.br/diversitas_journal/article/view/1931/1486 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2021 Marcelo Cavalcante, João Gomes Costa https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2021 Marcelo Cavalcante, João Gomes Costa https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Estadual de Alagoas - Eduneal |
publisher.none.fl_str_mv |
Universidade Estadual de Alagoas - Eduneal |
dc.source.none.fl_str_mv |
Diversitas Journal; v. 6 n. 4 (2021): Realidades da educação na Pandemia Sars-Covid 19 ; 3706-3723 2525-5215 10.48017/dj.v6i4 reponame:Diversitas Journal instname:Universidade Estadual de Alagoas (UNEAL) instacron:UNEAL |
instname_str |
Universidade Estadual de Alagoas (UNEAL) |
instacron_str |
UNEAL |
institution |
UNEAL |
reponame_str |
Diversitas Journal |
collection |
Diversitas Journal |
repository.name.fl_str_mv |
Diversitas Journal - Universidade Estadual de Alagoas (UNEAL) |
repository.mail.fl_str_mv |
revistadiversitasjournal@gmail.com |
_version_ |
1797051278759559168 |