Production of glycosylphosphatidylinositol-anchored proteins for vaccines and directed binding of immunoliposomes to specific cell types

Detalhes bibliográficos
Autor(a) principal: Fotoran,Wesley L.
Data de Publicação: 2020
Outros Autores: Kleiber,Nicole, Müntefering,Thomas, Liebau,Eva, Wunderlich,Gerhard
Tipo de documento: Artigo
Idioma: eng
Título da fonte: The Journal of venomous animals and toxins including tropical diseases (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-91992020000100323
Resumo: Abstract Background: Liposomes are highly useful carriers for delivering drugs or antigens. The association of glycosylphosphatidylinositol (GPI)-anchored proteins to liposomes potentially enhances the immunogenic effect of vaccine antigens by increasing their surface concentration. Furthermore, the introduction of a universal immunoglobulin-binding domain can make liposomes targetable to virtually any desired receptor for which antibodies exist. Methods: We developed a system for the production of recombinant proteins with GPI anchors and histidine tags and Strep-tags for simplified purification from cells. This system was applied to i) the green fluorescent protein (GFP) as a reporter, ii) the promising Plasmodium falciparum vaccine antigen PfRH5 and iii) a doubled immunoglobulin Fc-binding domain termed ZZ from protein A of Staphylococcus aureus. As the GPI-attachment domain, the C-terminus of murine CD14 was used. After the recovery of these three recombinant proteins from Chinese hamster ovary (CHO) cells and association with liposomes, their vaccine potential and ability to target the CD4 receptor on lymphocytes in ex vivo conditions were tested. Results: Upon immunization in mice, the PfRH5-GPI-loaded liposomes generated antibody titers of 103 to 104, and showed a 45% inhibitory effect on in vitro growth at an IgG concentration of 600 µg/mL in P. falciparum cultures. Using GPI-anchored ZZ to couple anti-CD4 antibodies to liposomes, we created immunoliposomes with a binding efficiency of 75% to CD4+ cells in splenocytes and minimal off-target binding. Conclusions: Proteins are very effectively associated with liposomes via a GPI-anchor to form proteoliposome particles and these are useful for a variety of applications including vaccines and antibody-mediated targeting of liposomes. Importantly, the CHO-cell and GPI-tagged produced PfRH5 elicited invasion-blocking antibodies qualitatively comparable to other approaches.
id UNESP-11_8d767bc243ab9c0936a6c572335a2354
oai_identifier_str oai:scielo:S1678-91992020000100323
network_acronym_str UNESP-11
network_name_str The Journal of venomous animals and toxins including tropical diseases (Online)
repository_id_str
spelling Production of glycosylphosphatidylinositol-anchored proteins for vaccines and directed binding of immunoliposomes to specific cell typesPlasmodiumLiposomeImmune targetingVaccineAbstract Background: Liposomes are highly useful carriers for delivering drugs or antigens. The association of glycosylphosphatidylinositol (GPI)-anchored proteins to liposomes potentially enhances the immunogenic effect of vaccine antigens by increasing their surface concentration. Furthermore, the introduction of a universal immunoglobulin-binding domain can make liposomes targetable to virtually any desired receptor for which antibodies exist. Methods: We developed a system for the production of recombinant proteins with GPI anchors and histidine tags and Strep-tags for simplified purification from cells. This system was applied to i) the green fluorescent protein (GFP) as a reporter, ii) the promising Plasmodium falciparum vaccine antigen PfRH5 and iii) a doubled immunoglobulin Fc-binding domain termed ZZ from protein A of Staphylococcus aureus. As the GPI-attachment domain, the C-terminus of murine CD14 was used. After the recovery of these three recombinant proteins from Chinese hamster ovary (CHO) cells and association with liposomes, their vaccine potential and ability to target the CD4 receptor on lymphocytes in ex vivo conditions were tested. Results: Upon immunization in mice, the PfRH5-GPI-loaded liposomes generated antibody titers of 103 to 104, and showed a 45% inhibitory effect on in vitro growth at an IgG concentration of 600 µg/mL in P. falciparum cultures. Using GPI-anchored ZZ to couple anti-CD4 antibodies to liposomes, we created immunoliposomes with a binding efficiency of 75% to CD4+ cells in splenocytes and minimal off-target binding. Conclusions: Proteins are very effectively associated with liposomes via a GPI-anchor to form proteoliposome particles and these are useful for a variety of applications including vaccines and antibody-mediated targeting of liposomes. Importantly, the CHO-cell and GPI-tagged produced PfRH5 elicited invasion-blocking antibodies qualitatively comparable to other approaches.Centro de Estudos de Venenos e Animais Peçonhentos (CEVAP/UNESP)2020-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-91992020000100323Journal of Venomous Animals and Toxins including Tropical Diseases v.26 2020reponame:The Journal of venomous animals and toxins including tropical diseases (Online)instname:Universidade Estadual Paulista (UNESP)instacron:UNESP10.1590/1678-9199-jvatitd-2020-0032info:eu-repo/semantics/openAccessFotoran,Wesley L.Kleiber,NicoleMüntefering,ThomasLiebau,EvaWunderlich,Gerhardeng2020-07-31T00:00:00Zoai:scielo:S1678-91992020000100323Revistahttp://www.scielo.br/jvatitdPUBhttps://old.scielo.br/oai/scielo-oai.php||editorial@jvat.org.br1678-91991678-9180opendoar:2020-07-31T00:00The Journal of venomous animals and toxins including tropical diseases (Online) - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Production of glycosylphosphatidylinositol-anchored proteins for vaccines and directed binding of immunoliposomes to specific cell types
title Production of glycosylphosphatidylinositol-anchored proteins for vaccines and directed binding of immunoliposomes to specific cell types
spellingShingle Production of glycosylphosphatidylinositol-anchored proteins for vaccines and directed binding of immunoliposomes to specific cell types
Fotoran,Wesley L.
Plasmodium
Liposome
Immune targeting
Vaccine
title_short Production of glycosylphosphatidylinositol-anchored proteins for vaccines and directed binding of immunoliposomes to specific cell types
title_full Production of glycosylphosphatidylinositol-anchored proteins for vaccines and directed binding of immunoliposomes to specific cell types
title_fullStr Production of glycosylphosphatidylinositol-anchored proteins for vaccines and directed binding of immunoliposomes to specific cell types
title_full_unstemmed Production of glycosylphosphatidylinositol-anchored proteins for vaccines and directed binding of immunoliposomes to specific cell types
title_sort Production of glycosylphosphatidylinositol-anchored proteins for vaccines and directed binding of immunoliposomes to specific cell types
author Fotoran,Wesley L.
author_facet Fotoran,Wesley L.
Kleiber,Nicole
Müntefering,Thomas
Liebau,Eva
Wunderlich,Gerhard
author_role author
author2 Kleiber,Nicole
Müntefering,Thomas
Liebau,Eva
Wunderlich,Gerhard
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Fotoran,Wesley L.
Kleiber,Nicole
Müntefering,Thomas
Liebau,Eva
Wunderlich,Gerhard
dc.subject.por.fl_str_mv Plasmodium
Liposome
Immune targeting
Vaccine
topic Plasmodium
Liposome
Immune targeting
Vaccine
description Abstract Background: Liposomes are highly useful carriers for delivering drugs or antigens. The association of glycosylphosphatidylinositol (GPI)-anchored proteins to liposomes potentially enhances the immunogenic effect of vaccine antigens by increasing their surface concentration. Furthermore, the introduction of a universal immunoglobulin-binding domain can make liposomes targetable to virtually any desired receptor for which antibodies exist. Methods: We developed a system for the production of recombinant proteins with GPI anchors and histidine tags and Strep-tags for simplified purification from cells. This system was applied to i) the green fluorescent protein (GFP) as a reporter, ii) the promising Plasmodium falciparum vaccine antigen PfRH5 and iii) a doubled immunoglobulin Fc-binding domain termed ZZ from protein A of Staphylococcus aureus. As the GPI-attachment domain, the C-terminus of murine CD14 was used. After the recovery of these three recombinant proteins from Chinese hamster ovary (CHO) cells and association with liposomes, their vaccine potential and ability to target the CD4 receptor on lymphocytes in ex vivo conditions were tested. Results: Upon immunization in mice, the PfRH5-GPI-loaded liposomes generated antibody titers of 103 to 104, and showed a 45% inhibitory effect on in vitro growth at an IgG concentration of 600 µg/mL in P. falciparum cultures. Using GPI-anchored ZZ to couple anti-CD4 antibodies to liposomes, we created immunoliposomes with a binding efficiency of 75% to CD4+ cells in splenocytes and minimal off-target binding. Conclusions: Proteins are very effectively associated with liposomes via a GPI-anchor to form proteoliposome particles and these are useful for a variety of applications including vaccines and antibody-mediated targeting of liposomes. Importantly, the CHO-cell and GPI-tagged produced PfRH5 elicited invasion-blocking antibodies qualitatively comparable to other approaches.
publishDate 2020
dc.date.none.fl_str_mv 2020-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-91992020000100323
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-91992020000100323
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1678-9199-jvatitd-2020-0032
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Centro de Estudos de Venenos e Animais Peçonhentos (CEVAP/UNESP)
publisher.none.fl_str_mv Centro de Estudos de Venenos e Animais Peçonhentos (CEVAP/UNESP)
dc.source.none.fl_str_mv Journal of Venomous Animals and Toxins including Tropical Diseases v.26 2020
reponame:The Journal of venomous animals and toxins including tropical diseases (Online)
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str The Journal of venomous animals and toxins including tropical diseases (Online)
collection The Journal of venomous animals and toxins including tropical diseases (Online)
repository.name.fl_str_mv The Journal of venomous animals and toxins including tropical diseases (Online) - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv ||editorial@jvat.org.br
_version_ 1748958540950667264