Proteomics, toxicity and antivenom neutralization of Sri Lankan and Indian Russell’s viper (Daboia russelii) venoms
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | The Journal of venomous animals and toxins including tropical diseases (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-91992021000100309 |
Resumo: | Abstract Background: The western Russell’s viper (Daboia russelii) is widely distributed in South Asia, and geographical venom variation is anticipated among distant populations. Antivenoms used for Russell’s viper envenomation are, however, raised typically against snakes from Southern India. The present study investigated and compared the venom proteomes of D. russelii from Sri Lanka (DrSL) and India (DrI), the immunorecognition of Indian VINS Polyvalent Antivenom (VPAV) and its efficacy in neutralizing the venom toxicity. Methods: The venoms of DrSL and DrI were decomplexed with C18 high-performance liquid chromatography and SDS-polyacrylamide gel electrophoresis under reducing conditions. The proteins fractionated were identified through nano-ESI-liquid chromatography-tandem mass spectrometry (LCMS/MS). The immunological studies were conducted with enzyme-linked immunosorbent assay. The neutralization of the venom procoagulant effect was evaluated in citrated human plasma. The neutralization of the venom lethality was assessed in vivo in mice adopting the WHO protocol. Results: DrSL and DrI venom proteomes showed comparable major protein families, with phospholipases A2 (PLA2) being the most abundant (> 60% of total venom proteins) and diverse (six protein forms identified). Both venoms were highly procoagulant and lethal (intravenous median lethal dose in mice, LD50 = 0.24 and 0.32 µg/g, for DrSL and DrI, respectively), while lacking hemorrhagic and anticoagulant activities. VPAV was immunoreactive toward DrSL and DrI venoms, indicating conserved protein antigenicity in the venoms. The high molecular weight venom proteins were, however, more effectively immunorecognized than small ones. VPAV was able to neutralize the coagulopathic and lethal effects of the venoms moderately. Conclusion: Considering that a large amount of venom can be injected by Russell’s viper during envenomation, the potency of antivenom can be further improved for optimal neutralization and effective treatment. Region-specific venoms and key toxins may be incorporated into the immunization procedure during antivenom production. |
id |
UNESP-11_ca58a6cb92fc83371af935872addf664 |
---|---|
oai_identifier_str |
oai:scielo:S1678-91992021000100309 |
network_acronym_str |
UNESP-11 |
network_name_str |
The Journal of venomous animals and toxins including tropical diseases (Online) |
repository_id_str |
|
spelling |
Proteomics, toxicity and antivenom neutralization of Sri Lankan and Indian Russell’s viper (Daboia russelii) venomsGeographical variationVenomicsAntivenomicsAntivenom potencyAbstract Background: The western Russell’s viper (Daboia russelii) is widely distributed in South Asia, and geographical venom variation is anticipated among distant populations. Antivenoms used for Russell’s viper envenomation are, however, raised typically against snakes from Southern India. The present study investigated and compared the venom proteomes of D. russelii from Sri Lanka (DrSL) and India (DrI), the immunorecognition of Indian VINS Polyvalent Antivenom (VPAV) and its efficacy in neutralizing the venom toxicity. Methods: The venoms of DrSL and DrI were decomplexed with C18 high-performance liquid chromatography and SDS-polyacrylamide gel electrophoresis under reducing conditions. The proteins fractionated were identified through nano-ESI-liquid chromatography-tandem mass spectrometry (LCMS/MS). The immunological studies were conducted with enzyme-linked immunosorbent assay. The neutralization of the venom procoagulant effect was evaluated in citrated human plasma. The neutralization of the venom lethality was assessed in vivo in mice adopting the WHO protocol. Results: DrSL and DrI venom proteomes showed comparable major protein families, with phospholipases A2 (PLA2) being the most abundant (> 60% of total venom proteins) and diverse (six protein forms identified). Both venoms were highly procoagulant and lethal (intravenous median lethal dose in mice, LD50 = 0.24 and 0.32 µg/g, for DrSL and DrI, respectively), while lacking hemorrhagic and anticoagulant activities. VPAV was immunoreactive toward DrSL and DrI venoms, indicating conserved protein antigenicity in the venoms. The high molecular weight venom proteins were, however, more effectively immunorecognized than small ones. VPAV was able to neutralize the coagulopathic and lethal effects of the venoms moderately. Conclusion: Considering that a large amount of venom can be injected by Russell’s viper during envenomation, the potency of antivenom can be further improved for optimal neutralization and effective treatment. Region-specific venoms and key toxins may be incorporated into the immunization procedure during antivenom production.Centro de Estudos de Venenos e Animais Peçonhentos (CEVAP/UNESP)2021-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-91992021000100309Journal of Venomous Animals and Toxins including Tropical Diseases v.27 2021reponame:The Journal of venomous animals and toxins including tropical diseases (Online)instname:Universidade Estadual Paulista (UNESP)instacron:UNESP10.1590/1678-9199-jvatitd-2020-0177info:eu-repo/semantics/openAccessFaisal,TasnimTan,Kae YiTan,Nget HongSim,Si MuiGnanathasan,Christeine AriaraneeTan,Choo Hockeng2021-04-27T00:00:00Zoai:scielo:S1678-91992021000100309Revistahttp://www.scielo.br/jvatitdPUBhttps://old.scielo.br/oai/scielo-oai.php||editorial@jvat.org.br1678-91991678-9180opendoar:2021-04-27T00:00The Journal of venomous animals and toxins including tropical diseases (Online) - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Proteomics, toxicity and antivenom neutralization of Sri Lankan and Indian Russell’s viper (Daboia russelii) venoms |
title |
Proteomics, toxicity and antivenom neutralization of Sri Lankan and Indian Russell’s viper (Daboia russelii) venoms |
spellingShingle |
Proteomics, toxicity and antivenom neutralization of Sri Lankan and Indian Russell’s viper (Daboia russelii) venoms Faisal,Tasnim Geographical variation Venomics Antivenomics Antivenom potency |
title_short |
Proteomics, toxicity and antivenom neutralization of Sri Lankan and Indian Russell’s viper (Daboia russelii) venoms |
title_full |
Proteomics, toxicity and antivenom neutralization of Sri Lankan and Indian Russell’s viper (Daboia russelii) venoms |
title_fullStr |
Proteomics, toxicity and antivenom neutralization of Sri Lankan and Indian Russell’s viper (Daboia russelii) venoms |
title_full_unstemmed |
Proteomics, toxicity and antivenom neutralization of Sri Lankan and Indian Russell’s viper (Daboia russelii) venoms |
title_sort |
Proteomics, toxicity and antivenom neutralization of Sri Lankan and Indian Russell’s viper (Daboia russelii) venoms |
author |
Faisal,Tasnim |
author_facet |
Faisal,Tasnim Tan,Kae Yi Tan,Nget Hong Sim,Si Mui Gnanathasan,Christeine Ariaranee Tan,Choo Hock |
author_role |
author |
author2 |
Tan,Kae Yi Tan,Nget Hong Sim,Si Mui Gnanathasan,Christeine Ariaranee Tan,Choo Hock |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Faisal,Tasnim Tan,Kae Yi Tan,Nget Hong Sim,Si Mui Gnanathasan,Christeine Ariaranee Tan,Choo Hock |
dc.subject.por.fl_str_mv |
Geographical variation Venomics Antivenomics Antivenom potency |
topic |
Geographical variation Venomics Antivenomics Antivenom potency |
description |
Abstract Background: The western Russell’s viper (Daboia russelii) is widely distributed in South Asia, and geographical venom variation is anticipated among distant populations. Antivenoms used for Russell’s viper envenomation are, however, raised typically against snakes from Southern India. The present study investigated and compared the venom proteomes of D. russelii from Sri Lanka (DrSL) and India (DrI), the immunorecognition of Indian VINS Polyvalent Antivenom (VPAV) and its efficacy in neutralizing the venom toxicity. Methods: The venoms of DrSL and DrI were decomplexed with C18 high-performance liquid chromatography and SDS-polyacrylamide gel electrophoresis under reducing conditions. The proteins fractionated were identified through nano-ESI-liquid chromatography-tandem mass spectrometry (LCMS/MS). The immunological studies were conducted with enzyme-linked immunosorbent assay. The neutralization of the venom procoagulant effect was evaluated in citrated human plasma. The neutralization of the venom lethality was assessed in vivo in mice adopting the WHO protocol. Results: DrSL and DrI venom proteomes showed comparable major protein families, with phospholipases A2 (PLA2) being the most abundant (> 60% of total venom proteins) and diverse (six protein forms identified). Both venoms were highly procoagulant and lethal (intravenous median lethal dose in mice, LD50 = 0.24 and 0.32 µg/g, for DrSL and DrI, respectively), while lacking hemorrhagic and anticoagulant activities. VPAV was immunoreactive toward DrSL and DrI venoms, indicating conserved protein antigenicity in the venoms. The high molecular weight venom proteins were, however, more effectively immunorecognized than small ones. VPAV was able to neutralize the coagulopathic and lethal effects of the venoms moderately. Conclusion: Considering that a large amount of venom can be injected by Russell’s viper during envenomation, the potency of antivenom can be further improved for optimal neutralization and effective treatment. Region-specific venoms and key toxins may be incorporated into the immunization procedure during antivenom production. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-91992021000100309 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-91992021000100309 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1678-9199-jvatitd-2020-0177 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Centro de Estudos de Venenos e Animais Peçonhentos (CEVAP/UNESP) |
publisher.none.fl_str_mv |
Centro de Estudos de Venenos e Animais Peçonhentos (CEVAP/UNESP) |
dc.source.none.fl_str_mv |
Journal of Venomous Animals and Toxins including Tropical Diseases v.27 2021 reponame:The Journal of venomous animals and toxins including tropical diseases (Online) instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
The Journal of venomous animals and toxins including tropical diseases (Online) |
collection |
The Journal of venomous animals and toxins including tropical diseases (Online) |
repository.name.fl_str_mv |
The Journal of venomous animals and toxins including tropical diseases (Online) - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
||editorial@jvat.org.br |
_version_ |
1748958541045039104 |