Phase change materials: energetic analysis for Brazilian territory

Detalhes bibliográficos
Autor(a) principal: Pons, Vinicius
Data de Publicação: 2017
Outros Autores: Stanescu, George
Tipo de documento: Artigo
Idioma: por
Título da fonte: PARC (Campinas)
Texto Completo: https://periodicos.sbu.unicamp.br/ojs/index.php/parc/article/view/8650228
Resumo: The potential of reducing electrical energy consumption to maintain thermal comfort in an office with an area of 40 m² was evaluated for the eight bioclimatic zones defined according to the Brazilian norm NBR 15.220-2005. A layer of phase change material (PCM) of natural organic origin was employed on the outer wall. Three strategies for the thermal comfort maintenance were considered: (1) heat pump running according to an inverted Carnot cycle with constant coefficient of performance; (2) strategy 1 heat pump but always prioritizing the ventilation with external air when outside temperature is beneficial to indoor thermal control; (3) ventilation as in strategy 2 and maximum optimization of the heat pump used to maintain the temperature in the defined range. The temperature range 18°C-24°C was defined as thermal comfort and PCM was a mixture of capric acid and dodecyl alcohol with melting temperature of 26.5°C. In strategy 1, PCM reduced 4.28% electrical energy consumption for Santa Maria, state of Rio Grande do Sul, while with strategy 2, the reduction was 13.33%. For Curitiba, strategy 2 reduced 9.47%. The results for strategy 3 for the same city shows that the use of PCM reduces 20.18% of electrical energy consumption. Simulation using the third strategy made possible a reduction around 90% of electrical energy. It was observed in all the cases studied that the solar exergy has the potential of generating enough energy to maintain the internal temperature in the range of comfort. It is clear the need for technological advancement so that this transformation of exergy into electrical energy happens without so much energy loss. This work has qualified these data in a way to better understand their representativeness.
id UNICAMP-20_4c681c70849355f58dcdab0c7abc5406
oai_identifier_str oai:ojs.periodicos.sbu.unicamp.br:article/8650228
network_acronym_str UNICAMP-20
network_name_str PARC (Campinas)
repository_id_str
spelling Phase change materials: energetic analysis for Brazilian territoryMateriais com mudança de fase: análise de desempenho energético para o BrasilEnergy efficiency. Thermal comfort. PCM. Phase change materialsEficiência energética. Conforto térmico. PCM. Materiais com mudança de fase.The potential of reducing electrical energy consumption to maintain thermal comfort in an office with an area of 40 m² was evaluated for the eight bioclimatic zones defined according to the Brazilian norm NBR 15.220-2005. A layer of phase change material (PCM) of natural organic origin was employed on the outer wall. Three strategies for the thermal comfort maintenance were considered: (1) heat pump running according to an inverted Carnot cycle with constant coefficient of performance; (2) strategy 1 heat pump but always prioritizing the ventilation with external air when outside temperature is beneficial to indoor thermal control; (3) ventilation as in strategy 2 and maximum optimization of the heat pump used to maintain the temperature in the defined range. The temperature range 18°C-24°C was defined as thermal comfort and PCM was a mixture of capric acid and dodecyl alcohol with melting temperature of 26.5°C. In strategy 1, PCM reduced 4.28% electrical energy consumption for Santa Maria, state of Rio Grande do Sul, while with strategy 2, the reduction was 13.33%. For Curitiba, strategy 2 reduced 9.47%. The results for strategy 3 for the same city shows that the use of PCM reduces 20.18% of electrical energy consumption. Simulation using the third strategy made possible a reduction around 90% of electrical energy. It was observed in all the cases studied that the solar exergy has the potential of generating enough energy to maintain the internal temperature in the range of comfort. It is clear the need for technological advancement so that this transformation of exergy into electrical energy happens without so much energy loss. This work has qualified these data in a way to better understand their representativeness.O potencial de redução do consumo de energia elétrica para manter o conforto térmico um uma sala comercial com área de 40 m² foi avaliado para as oito zonas bioclimáticas definidas de acordo com a norma brasileira NBR 15.220-2005, ao empregar na parede externa uma camada de material de mudança de fase (PCM) de origem orgânica natural. Foram consideradas três estratégias para a manutenção do conforto térmico: (1) uma bomba de calor funcionando conforme um ciclo de Carnot invertido com COP constante; (2) utilização da bomba de calor acima mencionada, mas priorizando sempre a ventilação com ar externo; (3) ventilação como no caso 2 e otimizando a bomba de calor da estratégia 1. O controle do conforto térmico foi realizado somente para a manutenção na faixa 18° C - 24° C da temperatura interna na sala, sendo o PCM de uma mistura de ácido cáprico e álcool dodecílico com temperatura de fusão de 26,5° C. A estratégia 1, permitiu uma redução de 4,28% no consumo de energia elétrica, para a cidade de Santa Maria no Rio Grande do Sul, enquanto com a estratégia 2 a redução foi de 13,33%. Para Curitiba, foi possível reduzir 9,47% do consumo de eletricidade ao utilizar a estratégia 2. Cálculos realizados com base na estratégia 3 para a mesma cidade indicam que o uso de PCM pode levar a uma redução de 20,18% no consumo de energia elétrica. Os resultados numéricos com a estratégia 3, indicam reduções de 90% do consumo de energia. Observou-se todos os casos estudados que a exergia solar tem o potencial de geração de energia suficiente para manter a temperatura interna na faixa de conforto. É clara a necessidade de avanço tecnológico para que esta transformação de exergia em energia elétrica aconteça sem tanta perda energética. Este trabalho qualificou estes dados de maneira a melhor entender a representatividade dos mesmos.Universidade Estadual de Campinas2017-06-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionSimulação computacionalComputational Simulationapplication/pdfhttps://periodicos.sbu.unicamp.br/ojs/index.php/parc/article/view/865022810.20396/parc.v8i2.8650228PARC Pesquisa em Arquitetura e Construção; Vol. 8 No. 2 (2017); 127-140PARC Pesquisa em Arquitetura e Construção; Vol. 8 Núm. 2 (2017); 127-140PARC Pesquisa em Arquitetura e Construção; v. 8 n. 2 (2017); 127-1401980-6809reponame:PARC (Campinas)instname:Universidade Estadual de Campinas (UNICAMP)instacron:UNICAMPporhttps://periodicos.sbu.unicamp.br/ojs/index.php/parc/article/view/8650228/17371Copyright (c) 2018 PARC Pesquisa em Arquitetura e Construçãoinfo:eu-repo/semantics/openAccessPons, ViniciusStanescu, George2019-06-17T15:19:09Zoai:ojs.periodicos.sbu.unicamp.br:article/8650228Revistahttp://periodicos.sbu.unicamp.br/ojs/index.php/parcPUBhttps://periodicos.sbu.unicamp.br/ojs/index.php/parc/oai||parc@fec.unicamp.br1980-68091980-6809opendoar:2022-11-08T14:24:39.190507PARC (Campinas) - Universidade Estadual de Campinas (UNICAMP)false
dc.title.none.fl_str_mv Phase change materials: energetic analysis for Brazilian territory
Materiais com mudança de fase: análise de desempenho energético para o Brasil
title Phase change materials: energetic analysis for Brazilian territory
spellingShingle Phase change materials: energetic analysis for Brazilian territory
Pons, Vinicius
Energy efficiency. Thermal comfort. PCM. Phase change materials
Eficiência energética. Conforto térmico. PCM. Materiais com mudança de fase.
title_short Phase change materials: energetic analysis for Brazilian territory
title_full Phase change materials: energetic analysis for Brazilian territory
title_fullStr Phase change materials: energetic analysis for Brazilian territory
title_full_unstemmed Phase change materials: energetic analysis for Brazilian territory
title_sort Phase change materials: energetic analysis for Brazilian territory
author Pons, Vinicius
author_facet Pons, Vinicius
Stanescu, George
author_role author
author2 Stanescu, George
author2_role author
dc.contributor.author.fl_str_mv Pons, Vinicius
Stanescu, George
dc.subject.por.fl_str_mv Energy efficiency. Thermal comfort. PCM. Phase change materials
Eficiência energética. Conforto térmico. PCM. Materiais com mudança de fase.
topic Energy efficiency. Thermal comfort. PCM. Phase change materials
Eficiência energética. Conforto térmico. PCM. Materiais com mudança de fase.
description The potential of reducing electrical energy consumption to maintain thermal comfort in an office with an area of 40 m² was evaluated for the eight bioclimatic zones defined according to the Brazilian norm NBR 15.220-2005. A layer of phase change material (PCM) of natural organic origin was employed on the outer wall. Three strategies for the thermal comfort maintenance were considered: (1) heat pump running according to an inverted Carnot cycle with constant coefficient of performance; (2) strategy 1 heat pump but always prioritizing the ventilation with external air when outside temperature is beneficial to indoor thermal control; (3) ventilation as in strategy 2 and maximum optimization of the heat pump used to maintain the temperature in the defined range. The temperature range 18°C-24°C was defined as thermal comfort and PCM was a mixture of capric acid and dodecyl alcohol with melting temperature of 26.5°C. In strategy 1, PCM reduced 4.28% electrical energy consumption for Santa Maria, state of Rio Grande do Sul, while with strategy 2, the reduction was 13.33%. For Curitiba, strategy 2 reduced 9.47%. The results for strategy 3 for the same city shows that the use of PCM reduces 20.18% of electrical energy consumption. Simulation using the third strategy made possible a reduction around 90% of electrical energy. It was observed in all the cases studied that the solar exergy has the potential of generating enough energy to maintain the internal temperature in the range of comfort. It is clear the need for technological advancement so that this transformation of exergy into electrical energy happens without so much energy loss. This work has qualified these data in a way to better understand their representativeness.
publishDate 2017
dc.date.none.fl_str_mv 2017-06-30
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Simulação computacional
Computational Simulation
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicos.sbu.unicamp.br/ojs/index.php/parc/article/view/8650228
10.20396/parc.v8i2.8650228
url https://periodicos.sbu.unicamp.br/ojs/index.php/parc/article/view/8650228
identifier_str_mv 10.20396/parc.v8i2.8650228
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://periodicos.sbu.unicamp.br/ojs/index.php/parc/article/view/8650228/17371
dc.rights.driver.fl_str_mv Copyright (c) 2018 PARC Pesquisa em Arquitetura e Construção
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2018 PARC Pesquisa em Arquitetura e Construção
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual de Campinas
publisher.none.fl_str_mv Universidade Estadual de Campinas
dc.source.none.fl_str_mv PARC Pesquisa em Arquitetura e Construção; Vol. 8 No. 2 (2017); 127-140
PARC Pesquisa em Arquitetura e Construção; Vol. 8 Núm. 2 (2017); 127-140
PARC Pesquisa em Arquitetura e Construção; v. 8 n. 2 (2017); 127-140
1980-6809
reponame:PARC (Campinas)
instname:Universidade Estadual de Campinas (UNICAMP)
instacron:UNICAMP
instname_str Universidade Estadual de Campinas (UNICAMP)
instacron_str UNICAMP
institution UNICAMP
reponame_str PARC (Campinas)
collection PARC (Campinas)
repository.name.fl_str_mv PARC (Campinas) - Universidade Estadual de Campinas (UNICAMP)
repository.mail.fl_str_mv ||parc@fec.unicamp.br
_version_ 1800216629169094656