Introdução a cohomologia de Floer
Autor(a) principal: | |
---|---|
Data de Publicação: | 1999 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da Universidade Estadual de Campinas (UNICAMP) |
Texto Completo: | https://hdl.handle.net/20.500.12733/1587411 |
Resumo: | Orientador: Marcio Antonio de Faria Rosa |
id |
UNICAMP-30_33c15bb23322c4038c632455634bff52 |
---|---|
oai_identifier_str |
oai::175502 |
network_acronym_str |
UNICAMP-30 |
network_name_str |
Biblioteca Digital de Teses e Dissertações da Universidade Estadual de Campinas (UNICAMP) |
repository_id_str |
|
spelling |
Introdução a cohomologia de FloerTeoria de MorseSupersimetriaHomologia (Matemática)Orientador: Marcio Antonio de Faria RosaDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação CientificaResumo: Estudamos a teoria de Morse sob diferentes pontos de vista, culminando com uma introdução à cohomologia de Floer. Para isso, obtivemos as desigualdades de Morse através de varias estratégias distintas: (i) através do enfoque tradicional, em que a topologia da variedade é investigada em termos de pontos críticos e linhas de gradiente de funções; (ii) utilizando a teoria do índice de Conley; (iii) através do enfoque de Witten, segundo o qual o laplaciano da variedade é deformado por uma função e identificado com o hamiltoniano de um sistema mecânico-quântico supersimétrico e (iv) utilizando o enfoque de Floer, que formaliza o procedimento de Witten e o estende para variedades de dimensão infinita. Aqui ainda abordamos o caso em que a variedade é um espaço de conexões sobre uma 3-esfera homológica e a função é dada pelo funcional de Chern-SimonsAbstract: We have studied Morse theory from different viewpoints, culminating in an introduction to Floer cohomology. To do that, we have obtained Morse inequalities through distinct strategies: (i) by employing the standard approach, according to which the topology of the manifold is investigated in terms of critical points and gradient lines of functions, (ii) through the Conley index theory, {iii) through Witten's approach, where the Laplacian of the manifold is deformed by a function and identified with the Hamiltonian operator of a supersymmetrical quantum mechanical system, and (iv) through Floer's approach, which formalizes Witten's procedure and generalizes it to infinite dimensional manifolds. Here we also consider the case in which the manifold is a space of connections over a homology 3-sphere and the function is the Chern-Simons functionalMestradoMestre em Matemática[s.n.]Rosa, Márcio Antonio de Faria, 1959-Torriani, Hugo HoracioVaz, Jayme MorandiUniversidade Estadual de Campinas (UNICAMP). Instituto de Matemática, Estatística e Computação CientíficaPrograma de Pós-Graduação em MatemáticaUNIVERSIDADE ESTADUAL DE CAMPINASMosna, Ricardo Antonio, 1974-1999info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdf82p.https://hdl.handle.net/20.500.12733/1587411MOSNA, Ricardo Antonio. Introdução a cohomologia de Floer. 1999. 82p. Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica, Campinas, SP. Disponível em: https://hdl.handle.net/20.500.12733/1587411. Acesso em: 2 set. 2024.https://repositorio.unicamp.br/acervo/detalhe/175502porreponame:Biblioteca Digital de Teses e Dissertações da Universidade Estadual de Campinas (UNICAMP)instname:Universidade Estadual de Campinas (UNICAMP)instacron:UNICAMPinfo:eu-repo/semantics/openAccess2022-09-05T16:48:12Zoai::175502Biblioteca Digital de Teses e DissertaçõesPUBhttp://repositorio.unicamp.br/oai/tese/oai.aspsbubd@unicamp.bropendoar:2022-09-05T16:48:12Biblioteca Digital de Teses e Dissertações da Universidade Estadual de Campinas (UNICAMP) - Universidade Estadual de Campinas (UNICAMP)false |
dc.title.none.fl_str_mv |
Introdução a cohomologia de Floer |
title |
Introdução a cohomologia de Floer |
spellingShingle |
Introdução a cohomologia de Floer Mosna, Ricardo Antonio, 1974- Teoria de Morse Supersimetria Homologia (Matemática) |
title_short |
Introdução a cohomologia de Floer |
title_full |
Introdução a cohomologia de Floer |
title_fullStr |
Introdução a cohomologia de Floer |
title_full_unstemmed |
Introdução a cohomologia de Floer |
title_sort |
Introdução a cohomologia de Floer |
author |
Mosna, Ricardo Antonio, 1974- |
author_facet |
Mosna, Ricardo Antonio, 1974- |
author_role |
author |
dc.contributor.none.fl_str_mv |
Rosa, Márcio Antonio de Faria, 1959- Torriani, Hugo Horacio Vaz, Jayme Morandi Universidade Estadual de Campinas (UNICAMP). Instituto de Matemática, Estatística e Computação Científica Programa de Pós-Graduação em Matemática UNIVERSIDADE ESTADUAL DE CAMPINAS |
dc.contributor.author.fl_str_mv |
Mosna, Ricardo Antonio, 1974- |
dc.subject.por.fl_str_mv |
Teoria de Morse Supersimetria Homologia (Matemática) |
topic |
Teoria de Morse Supersimetria Homologia (Matemática) |
description |
Orientador: Marcio Antonio de Faria Rosa |
publishDate |
1999 |
dc.date.none.fl_str_mv |
1999 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/20.500.12733/1587411 MOSNA, Ricardo Antonio. Introdução a cohomologia de Floer. 1999. 82p. Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica, Campinas, SP. Disponível em: https://hdl.handle.net/20.500.12733/1587411. Acesso em: 2 set. 2024. |
url |
https://hdl.handle.net/20.500.12733/1587411 |
identifier_str_mv |
MOSNA, Ricardo Antonio. Introdução a cohomologia de Floer. 1999. 82p. Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica, Campinas, SP. Disponível em: https://hdl.handle.net/20.500.12733/1587411. Acesso em: 2 set. 2024. |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://repositorio.unicamp.br/acervo/detalhe/175502 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf 82p. |
dc.publisher.none.fl_str_mv |
[s.n.] |
publisher.none.fl_str_mv |
[s.n.] |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da Universidade Estadual de Campinas (UNICAMP) instname:Universidade Estadual de Campinas (UNICAMP) instacron:UNICAMP |
instname_str |
Universidade Estadual de Campinas (UNICAMP) |
instacron_str |
UNICAMP |
institution |
UNICAMP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da Universidade Estadual de Campinas (UNICAMP) |
collection |
Biblioteca Digital de Teses e Dissertações da Universidade Estadual de Campinas (UNICAMP) |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da Universidade Estadual de Campinas (UNICAMP) - Universidade Estadual de Campinas (UNICAMP) |
repository.mail.fl_str_mv |
sbubd@unicamp.br |
_version_ |
1809188823152721920 |