Mapeamento de áreas potenciais à implantação de aterro sanitário em Guarapuava (PR), com uso de redes neurais artificiaisMapping potential areas for the establishment of landfill in Guarapuava (PR), using artificial neural networks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Ambiência (Online) |
Texto Completo: | https://revistas.unicentro.br/index.php/ambiencia/article/view/1163 |
Resumo: | Este trabalho apresenta o mapeamento de áreas com potencialidade de implantação de aterro sanitário em Guarapuava (PR), utilizando a metodologia baseada na classificação supervisionada, por Redes Neurais Artificiais (RNA). Para a classificação foi realizada uma série de testes com variações de dados de entrada, e nos parâmetros da RNA; desta forma foram obtidos diferentes resultados na camada de saída. Os melhores resultados foram obtidos com a arquitetura composta por cinco camadas de entrada e com dois neurônios na camada escondida e com alterações das variáveis de limiar de treinamento de 0.8000, taxa de aprendizagem 0.1000, dinâmica do treinamento de 0.8000, erro médio quadrático de 0.0500 e o número de iterações de 2000, sendo considerada a arquitetura ideal para este tipo de classificação. De forma que as RNAs representam uma técnica capaz de separar características de áreas com potencial de implantação do aterro sanitário, por meio da integração de variáveis, com diferentes origens e escalas, o que não é possível com classificadores estatísticos convencionais.Abstract This paper presents the mapping of areas with potential for landfill implementation in Guarapuava (PR), using the methodology based on classification by Artificial Neural Networks (ANN). For classification a series of tests with variations in the number of layers of input, and the parameters of the ANN were performed. Thus, different results were obtained in the output layer. The best results were obtained with the architecture consisting of 5 layers of input and 2 neurons in the hidden layer and changing the variables of threshold training 0.8000, 0.1000 learning rate, dynamic training of 0.8000, mean square error of 0.0500 and number of iterations of 2000, and it was considered the ideal architecture for this type of classification. In this way, it was considered that the ANN represent a technique capable of separating characteristics of areas with potential for landfill implementation, through the integration of variables from different sources and scales, which is not possible using with conventional statistical classifiers. |
id |
UNICETO-1_2757dfb4f931edd350169acd89198163 |
---|---|
oai_identifier_str |
oai:ojs.revistas.unicentro.br:article/1163 |
network_acronym_str |
UNICETO-1 |
network_name_str |
Ambiência (Online) |
repository_id_str |
|
spelling |
Mapeamento de áreas potenciais à implantação de aterro sanitário em Guarapuava (PR), com uso de redes neurais artificiaisMapping potential areas for the establishment of landfill in Guarapuava (PR), using artificial neural networksGeografiaAterro Sanitário, Resíduos Sólidos Domiciliares, Redes Neurais Artificiais, Guarapuava-PR.Planejamento ambientalEste trabalho apresenta o mapeamento de áreas com potencialidade de implantação de aterro sanitário em Guarapuava (PR), utilizando a metodologia baseada na classificação supervisionada, por Redes Neurais Artificiais (RNA). Para a classificação foi realizada uma série de testes com variações de dados de entrada, e nos parâmetros da RNA; desta forma foram obtidos diferentes resultados na camada de saída. Os melhores resultados foram obtidos com a arquitetura composta por cinco camadas de entrada e com dois neurônios na camada escondida e com alterações das variáveis de limiar de treinamento de 0.8000, taxa de aprendizagem 0.1000, dinâmica do treinamento de 0.8000, erro médio quadrático de 0.0500 e o número de iterações de 2000, sendo considerada a arquitetura ideal para este tipo de classificação. De forma que as RNAs representam uma técnica capaz de separar características de áreas com potencial de implantação do aterro sanitário, por meio da integração de variáveis, com diferentes origens e escalas, o que não é possível com classificadores estatísticos convencionais.Abstract This paper presents the mapping of areas with potential for landfill implementation in Guarapuava (PR), using the methodology based on classification by Artificial Neural Networks (ANN). For classification a series of tests with variations in the number of layers of input, and the parameters of the ANN were performed. Thus, different results were obtained in the output layer. The best results were obtained with the architecture consisting of 5 layers of input and 2 neurons in the hidden layer and changing the variables of threshold training 0.8000, 0.1000 learning rate, dynamic training of 0.8000, mean square error of 0.0500 and number of iterations of 2000, and it was considered the ideal architecture for this type of classification. In this way, it was considered that the ANN represent a technique capable of separating characteristics of areas with potential for landfill implementation, through the integration of variables from different sources and scales, which is not possible using with conventional statistical classifiers.Universidade Estadual do Centro-Oeste do Paraná, UNICENTROAntonio, Janaina NataliRibeiro, Selma Regina Aranha2011-12-16info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.unicentro.br/index.php/ambiencia/article/view/1163AMBIÊNCIA; v. 7, n. 3 (2011): Ambiência; 515-5332175-94051808-0251reponame:Ambiência (Online)instname:Universidade Estadual do Centro-Oeste (UNICENTRO)instacron:UNICENTROporhttps://revistas.unicentro.br/index.php/ambiencia/article/view/1163/1332Guarapuava-PRinfo:eu-repo/semantics/openAccess2012-10-26T00:08:14Zoai:ojs.revistas.unicentro.br:article/1163Revistahttps://revistas.unicentro.br/index.php/ambienciaPUBhttps://revistas.unicentro.br/index.php/ambiencia/oaibertotti@unicentro.br||ambiencia.unicentro@gmail.com2175-94051808-0251opendoar:2012-10-26T00:08:14Ambiência (Online) - Universidade Estadual do Centro-Oeste (UNICENTRO)false |
dc.title.none.fl_str_mv |
Mapeamento de áreas potenciais à implantação de aterro sanitário em Guarapuava (PR), com uso de redes neurais artificiaisMapping potential areas for the establishment of landfill in Guarapuava (PR), using artificial neural networks |
title |
Mapeamento de áreas potenciais à implantação de aterro sanitário em Guarapuava (PR), com uso de redes neurais artificiaisMapping potential areas for the establishment of landfill in Guarapuava (PR), using artificial neural networks |
spellingShingle |
Mapeamento de áreas potenciais à implantação de aterro sanitário em Guarapuava (PR), com uso de redes neurais artificiaisMapping potential areas for the establishment of landfill in Guarapuava (PR), using artificial neural networks Antonio, Janaina Natali Geografia Aterro Sanitário, Resíduos Sólidos Domiciliares, Redes Neurais Artificiais, Guarapuava-PR. Planejamento ambiental |
title_short |
Mapeamento de áreas potenciais à implantação de aterro sanitário em Guarapuava (PR), com uso de redes neurais artificiaisMapping potential areas for the establishment of landfill in Guarapuava (PR), using artificial neural networks |
title_full |
Mapeamento de áreas potenciais à implantação de aterro sanitário em Guarapuava (PR), com uso de redes neurais artificiaisMapping potential areas for the establishment of landfill in Guarapuava (PR), using artificial neural networks |
title_fullStr |
Mapeamento de áreas potenciais à implantação de aterro sanitário em Guarapuava (PR), com uso de redes neurais artificiaisMapping potential areas for the establishment of landfill in Guarapuava (PR), using artificial neural networks |
title_full_unstemmed |
Mapeamento de áreas potenciais à implantação de aterro sanitário em Guarapuava (PR), com uso de redes neurais artificiaisMapping potential areas for the establishment of landfill in Guarapuava (PR), using artificial neural networks |
title_sort |
Mapeamento de áreas potenciais à implantação de aterro sanitário em Guarapuava (PR), com uso de redes neurais artificiaisMapping potential areas for the establishment of landfill in Guarapuava (PR), using artificial neural networks |
author |
Antonio, Janaina Natali |
author_facet |
Antonio, Janaina Natali Ribeiro, Selma Regina Aranha |
author_role |
author |
author2 |
Ribeiro, Selma Regina Aranha |
author2_role |
author |
dc.contributor.none.fl_str_mv |
|
dc.contributor.author.fl_str_mv |
Antonio, Janaina Natali Ribeiro, Selma Regina Aranha |
dc.subject.por.fl_str_mv |
Geografia Aterro Sanitário, Resíduos Sólidos Domiciliares, Redes Neurais Artificiais, Guarapuava-PR. Planejamento ambiental |
topic |
Geografia Aterro Sanitário, Resíduos Sólidos Domiciliares, Redes Neurais Artificiais, Guarapuava-PR. Planejamento ambiental |
description |
Este trabalho apresenta o mapeamento de áreas com potencialidade de implantação de aterro sanitário em Guarapuava (PR), utilizando a metodologia baseada na classificação supervisionada, por Redes Neurais Artificiais (RNA). Para a classificação foi realizada uma série de testes com variações de dados de entrada, e nos parâmetros da RNA; desta forma foram obtidos diferentes resultados na camada de saída. Os melhores resultados foram obtidos com a arquitetura composta por cinco camadas de entrada e com dois neurônios na camada escondida e com alterações das variáveis de limiar de treinamento de 0.8000, taxa de aprendizagem 0.1000, dinâmica do treinamento de 0.8000, erro médio quadrático de 0.0500 e o número de iterações de 2000, sendo considerada a arquitetura ideal para este tipo de classificação. De forma que as RNAs representam uma técnica capaz de separar características de áreas com potencial de implantação do aterro sanitário, por meio da integração de variáveis, com diferentes origens e escalas, o que não é possível com classificadores estatísticos convencionais.Abstract This paper presents the mapping of areas with potential for landfill implementation in Guarapuava (PR), using the methodology based on classification by Artificial Neural Networks (ANN). For classification a series of tests with variations in the number of layers of input, and the parameters of the ANN were performed. Thus, different results were obtained in the output layer. The best results were obtained with the architecture consisting of 5 layers of input and 2 neurons in the hidden layer and changing the variables of threshold training 0.8000, 0.1000 learning rate, dynamic training of 0.8000, mean square error of 0.0500 and number of iterations of 2000, and it was considered the ideal architecture for this type of classification. In this way, it was considered that the ANN represent a technique capable of separating characteristics of areas with potential for landfill implementation, through the integration of variables from different sources and scales, which is not possible using with conventional statistical classifiers. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-12-16 |
dc.type.none.fl_str_mv |
|
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://revistas.unicentro.br/index.php/ambiencia/article/view/1163 |
url |
https://revistas.unicentro.br/index.php/ambiencia/article/view/1163 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://revistas.unicentro.br/index.php/ambiencia/article/view/1163/1332 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
Guarapuava-PR |
dc.publisher.none.fl_str_mv |
Universidade Estadual do Centro-Oeste do Paraná, UNICENTRO |
publisher.none.fl_str_mv |
Universidade Estadual do Centro-Oeste do Paraná, UNICENTRO |
dc.source.none.fl_str_mv |
AMBIÊNCIA; v. 7, n. 3 (2011): Ambiência; 515-533 2175-9405 1808-0251 reponame:Ambiência (Online) instname:Universidade Estadual do Centro-Oeste (UNICENTRO) instacron:UNICENTRO |
instname_str |
Universidade Estadual do Centro-Oeste (UNICENTRO) |
instacron_str |
UNICENTRO |
institution |
UNICENTRO |
reponame_str |
Ambiência (Online) |
collection |
Ambiência (Online) |
repository.name.fl_str_mv |
Ambiência (Online) - Universidade Estadual do Centro-Oeste (UNICENTRO) |
repository.mail.fl_str_mv |
bertotti@unicentro.br||ambiencia.unicentro@gmail.com |
_version_ |
1798316921502826496 |