MicroRNAs de vesículas extracelulares circulantes como biomarcadores de sobrevida de pacientes sépticos pós alta da Unidade de Terapia Intensiva

Detalhes bibliográficos
Autor(a) principal: Souza-Siqueira, Talita
Data de Publicação: 2020
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da Universidade Cruzeiro do Sul
Texto Completo: https://repositorio.cruzeirodosul.edu.br/handle/123456789/922
Resumo: Apesar dos estudos já realizados sobre microRNAs (miRNAs) durante a sepse, pouco se sabe sobre a expressão desses após a alta hospitalar. Esse estudo teve como objetivo avaliar proteínas e miRNAs nas vesículas extracelulares (VEs) plasmáticas de pacientes sépticos em seis fases: a) fase aguda (entre o primeiro e o 4º dia de internação), b) no momento de alta da Unidade de Terapia Intensiva (UTI) e c) após 3 meses da alta da UTI, d) 6 meses, e) 12 meses, e f) 3 anos. Os dados dos miRNAs das VEs foram correlacionados com aqueles da concentração plasmática de citocinas (pró- e anti-inflamatórias). Os pacientes desenvolveram um estado basal crônico de inflamação de baixa intensidade, quando comparados ao grupo controle, com valores ligeiramente aumentados de IL-6, IL-8 e proteína C reativa no plasma mesmo após 3 anos da alta. As VEs plasmáticas isoladas por ultracentrifugação apresentaram tamanho e composição de proteínas características. A composição proteica variou entre os estados saudável e de sepse além de também ser diferente entre os pacientes que sobreviveram e os que foram a óbito. Baseado nos dados da proteômica, as VEs são oriundas do sistema linfóide, linfócitos B e baço, medula óssea e hepatócitos. Quinze miRNAs foram encontrados nas VEs plasmáticas dos pacientes sépticos e controles: miRNAs miR-15b-5p, -16- 5p, -20a-5p, -21-5p, -25-3p, -27a-3p, -29a-3p, -30d-5p, -93-5p, -126-3p -146a-5p, - 148a-3p, -191-5p, -195-5p e -223-3p. A redução da expressão de treze miRNAs (miR-15b-5p, -16-5p, -20a-5p, -25-3p, -27a-3p, -29a-3p, -30d-5p, -93-5p, -146a-5p, - 148a-3p, -191-5p, -195-5p e -223-3p) na fase aguda da sepse (internação na UTI) foi mais intensa nos pacientes que foram a óbito do que nos sobreviventes. Isso indica que esses 13 miRNAs podem ser usados como biomarcadores plasmáticos de prognóstico de sobrevida na sepse. A redução na expressão dos miRNAs -15b-5p, - 16-5p, -25-3p, -27a-3p, -29a-3p, -30d-5p, -93-5p, -195-5p e -223-3p durante a fase aguda se manteve até um ano após a alta da UTI, mas houve reversão após três anos, retornando aos valores dos controles. Esses nove miRNAs podem ser utilizados como biomarcadores plasmáticos da evolução e recuperação dos pacientes sépticos após alta hospitalar.
id UNICSUL-1_57b3cf2999e29daede626164cbecc2fe
oai_identifier_str oai:repositorio.cruzeirodosul.edu.br:123456789/922
network_acronym_str UNICSUL-1
network_name_str Repositório Institucional da Universidade Cruzeiro do Sul
repository_id_str
spelling 2020-08-25T18:57:25Z2020-06-292020-08-25T18:57:25Z2020-04-27SOUZA-SIQUEIRA, T. MicroRNAs de vesículas extracelulares circulantes como biomarcadores de sobrevida de pacientes sépticos pós alta da Unidade de Terapia Intensiva. 2020. 99 f. Tese (Doutorado Interdisciplinar em Ciências da Saúde) - Universidade Cruzeiro do Sul, São Paulo – 2020.https://repositorio.cruzeirodosul.edu.br/handle/123456789/922Apesar dos estudos já realizados sobre microRNAs (miRNAs) durante a sepse, pouco se sabe sobre a expressão desses após a alta hospitalar. Esse estudo teve como objetivo avaliar proteínas e miRNAs nas vesículas extracelulares (VEs) plasmáticas de pacientes sépticos em seis fases: a) fase aguda (entre o primeiro e o 4º dia de internação), b) no momento de alta da Unidade de Terapia Intensiva (UTI) e c) após 3 meses da alta da UTI, d) 6 meses, e) 12 meses, e f) 3 anos. Os dados dos miRNAs das VEs foram correlacionados com aqueles da concentração plasmática de citocinas (pró- e anti-inflamatórias). Os pacientes desenvolveram um estado basal crônico de inflamação de baixa intensidade, quando comparados ao grupo controle, com valores ligeiramente aumentados de IL-6, IL-8 e proteína C reativa no plasma mesmo após 3 anos da alta. As VEs plasmáticas isoladas por ultracentrifugação apresentaram tamanho e composição de proteínas características. A composição proteica variou entre os estados saudável e de sepse além de também ser diferente entre os pacientes que sobreviveram e os que foram a óbito. Baseado nos dados da proteômica, as VEs são oriundas do sistema linfóide, linfócitos B e baço, medula óssea e hepatócitos. Quinze miRNAs foram encontrados nas VEs plasmáticas dos pacientes sépticos e controles: miRNAs miR-15b-5p, -16- 5p, -20a-5p, -21-5p, -25-3p, -27a-3p, -29a-3p, -30d-5p, -93-5p, -126-3p -146a-5p, - 148a-3p, -191-5p, -195-5p e -223-3p. A redução da expressão de treze miRNAs (miR-15b-5p, -16-5p, -20a-5p, -25-3p, -27a-3p, -29a-3p, -30d-5p, -93-5p, -146a-5p, - 148a-3p, -191-5p, -195-5p e -223-3p) na fase aguda da sepse (internação na UTI) foi mais intensa nos pacientes que foram a óbito do que nos sobreviventes. Isso indica que esses 13 miRNAs podem ser usados como biomarcadores plasmáticos de prognóstico de sobrevida na sepse. A redução na expressão dos miRNAs -15b-5p, - 16-5p, -25-3p, -27a-3p, -29a-3p, -30d-5p, -93-5p, -195-5p e -223-3p durante a fase aguda se manteve até um ano após a alta da UTI, mas houve reversão após três anos, retornando aos valores dos controles. Esses nove miRNAs podem ser utilizados como biomarcadores plasmáticos da evolução e recuperação dos pacientes sépticos após alta hospitalar.Despite the studies already carried out on plasma microRNAs (miRNAs) in sepsis, they are not well known about changes in their expression after hospital discharge. This study aimed to evaluate septic individuals extracellular plasma vesicles (EVs) proteins and miRNAs in six phases: a) acute phase (between the first and the 4th day of hospitalization), b) at the time of Intensive Care Unit (ICU) discharge and c) 3 months after ICU discharge, d) 6 months, e) 12 months, and f) 3 years. The miRNA's results were correlated with the cytokines (pro- and anti-inflammatory) plasma concentrations. The patients developed a low-level baseline chronic inflammation state as compared to the control group with slightly increased plasma levels of IL-6, IL-8 and C reactive protein even 3 months after ICU discharge. Plasma EVs isolated by ultracentrifugation had the size and protein composition expected. The protein composition was different between the states of health and sepsis and between the survivors and the ones who died. According to the proteomics, the plasma EVs originated from the lymphoid system, B lymphocytes and spleen, bone morrow, and hepatocytes. The following 15 miRNAs were found in the plasma EVs from septic patients and controls: miR-15b-5p, -16-5p, -20a-5p, -25-3p, -27a-3p, -29a-3p, -30d- 5p, -93-5p, -146a-5p, -148a -3p, -191-5p, -195-5p, and -223-3p. The reduction in the expression of thirteen miRNAs (miR-15b-5p, -16-5p, -20a-5p, -25-3p, -27a-3p, -29a- 3p, -30d-5p, -93-5p, -146a-5p, -148a-3p, -191-5p, -195-5p e -223-3p) during the acute phase (ICU internment) was more pronounced in the patients who died than in the survivors. These 13 miRNAs maybe used as plasma biomarkers of survival prognosis in sepsis. The reduction in expression of the miRNAs -15b-5p, -16-5p, -25- 3p, -27a-3p, -29a-3p, -30d-5p, -93-5p, -195-5p, and -223-3p during the acute phase remained for up to one year after ICU discharge but it was abolished after three years, reaching the control levels. These 9 miRNAs can then be used as plasma biomarkers of evolution and recovery of septic patients after hospital discharge.porUniversidade Cruzeiro do SulPrograma de Pós Graduação Interdisciplinar em Ciências da SaúdeCruzeiro do SulBrasilCNPQ::CIENCIAS DA SAUDEInflamaçãomiR-15b-5pmiR-146a-5pmiR-223-3pmiR-195-5pSepticemia.MicroRNAs de vesículas extracelulares circulantes como biomarcadores de sobrevida de pacientes sépticos pós alta da Unidade de Terapia IntensivaCirculating Extracellular Vesicle MicroRNAs as survival Biomarkers in Septic Patients after Intensive Care Unit Dischargeinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisSoriano, Francisco Garcia04768281800http://lattes.cnpq.br/897978139013533206601333930http://lattes.cnpq.br/Souza-Siqueira, TalitaA NAHID, Md; SATOH, M.; CHAN, E Kl. MicroRNA in TLR signaling and endotoxin tolerance. Cellular & Molecular Immunology, [s.l.], v. 8, n. 5, p.388-403, 8 ago. 2011. Springer Science and Business Media LLC. ABBAS, A. K.; LICHTMAN, A. H.; PILLAI, S. H. I. V. Imunologia celular e molecular. 7. ed. Rio de Janeiro: Elsevier, 2012. ANDERSEN, C. L.; JENSEN, J. L.; ØRNTOFT, T. F.. Normalization of Real-Time Quantitative Reverse Transcription-PCR Data: A Model-Based Variance Estimation Approach to Identify Genes Suited for Normalization, Applied to Bladder and Colon. Cancer Research, [s.l.], v. 64, n. 15, p. 5245-5250, 1 ago. 2004. American Association for Cancer Research (AACR). ANGUS, D.C. et al. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Critical Care Medicine. v. 29, n.7, p.1303–1310, 2001. ANTONYAK, M. A.; CERIONE, R. A.. Microvesicles as Mediators of Intercellular Communication in Cancer. Methods In Molecular Biology, [s.l.], p.147-173, 2014. Springer New York. BAEK, D. et al. The impact of microRNAs on protein output. Nature, [s.l.], v. 455, n. 7209, p. 64-71, 30 jul. 2008. Springer Science and Business Media LLC. BARTEL, David P.. MicroRNAs: Target Recognition and Regulatory Functions. Cell, [s.l.], v. 136, n. 2, p.215-233, jan. 2009. Elsevier BV. BEALE, R. et al. PROGRESS Advisory Board. Promoting Global Research Excellence in Severe Sepsis (PROGRESS): lessons from an international sepsis registry. Infection. v. 37, n. 3, p. 222-32. Jun. 2009. BENZ, F. et al. Circulating microRNAs as biomarkers for sepsis. International journal of molecular sciences, v. 17, n. 1, p. 78, 2016. BENEYTO, L. A. P. et al. Valor pronóstico de la interleucina 6 en la mortalidad de pacientes con sepsis. Medicina Clínica, [s.l.], v. 147, n. 7, p.281-286, out. 2016. Elsevier BV. http://dx.doi.org/10.1016/j.medcli.2016.06.001. BRADLEY, D. et al. Clusterin Impairs Hepatic Insulin Sensitivity and Adipocyte Clusterin Associates With Cardiometabolic Risk. Diabetes Care, [s.l.], v. 42, n. 3, p.466-475, 18 jan. 2019. American Diabetes Association. CARNELL-MORRIS, P. et al. Analysis of Extracellular Vesicles Using Fluorescence Nanoparticle Tracking Analysis. Methods In Molecular Biology, [s.l.], p.153-173, 2017. Springer New York. http://dx.doi.org/10.1007/978-1-4939-7253-1_13. CARREIRAS, F. B. microRNA-155 mediates sepsis-associated cardiovascular dysfunction. 2015. 86 f. Dissertação (Mestrado) - Curso de Fisiopatologia Cardiovascular, Faculdade de Medicina da Universidade do Porto.Portugal, 2015. CASERTA, S. et al. Circulating plasma microRNAs can differentiate human sepsis and systemic inflammatory response syndrome (SIRS). Scientific reports, v. 6, p. 28006, 2016. CENTERS FOR DISEASE CONTROL (CDC)/ NCHS, National Hospital Discharge Survey: Rates per 10,000 populations of first-listed and any-listed diagnosis of septicemia or sepsis discharges: United States, 2000-2010. CHAHAR, Harendra; BAO, Xiaoyong; CASOLA, Antonella. Exosomes and Their Role in the Life Cycle and Pathogenesis of RNA Viruses. Viruses, [s.l.], v. 7, n. 6, p. 3204- 3225, 19 jun. 2015. MDPI AG. CHARCHAFLIEH, Jean et al. Activated complement factors as disease markers for sepsis. Disease markers, v. 2015, 2015. CHEN, X. et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Research - Nature, v.18, n.10, p.997-1006, 2008. CLANCY, J. W.; et al. Tumor-derived microvesicles in the tumor microenvironment: How vesicle heterogeneity can shape the future of a rapidly expanding field. Bioessays, [s.l.], v. 37, n. 12, p.1309-1316, 6 out. 2015. Wiley. COCUCCI, E.; MELDOLESI, J. Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends In Cell Biology, [s.l.], v. 25, n. 6, p.364-372, jun. 2015. Elsevier BV. COSENZA, S. et al. Pathogenic or Therapeutic Extracellular Vesicles in Rheumatic Diseases: Role of Mesenchymal Stem Cell-Derived Vesicles. International Journal of Molecular Sciences, v. 18, n. 4, p. 889, 2017. CHISTIAKOV, D. A. et al. Extracellular vesicles and atherosclerotic disease. Cellular and Molecular Life Sciences, v. 72, n. 14, p. 2697–2708, 2015. CUI, Yao-li et al. Interleukin-18 and miR-130a in severe sepsis patients with thrombocytopenia. Patient Preference and Adherence, [s.l.], p.313-320, mar. 2016. Dove Medical Press Ltd. http://dx.doi.org/10.2147/ppa.s95588. D’SOUZA-SCHOREY, C.; SCHOREY, J. Regulation and mechanisms of extracellular vesicle biogenesis and secretion. Essays In Biochemistry, [s.l.], v. 62, n. 2, p.125-133, 17 abr. 2018. Portland Press Ltd. DANTES, R. B; EPSTEIN, L. Combatting Sepsis: A Public Health Perspective. Clinical Infectious Diseases, [s.l.], v. 00, n. , p.1-3, 29 maio 2018. Oxford University Press (OUP). http://dx.doi.org/10.1093/cid/ciy342. DASU, M.R. et al. Toll-Like Receptors in Wound Healing: Location, Accessibility, and Timing. Journal of Investigative Dermatology, [s.l.], v. 132, n. 8, p.1955-1958, ago. 2012. DOI: 10.1038/jid.2012.208 DE GASSART, A. et al. Lipid raft-associated protein sorting in exosomes. Blood, v.102, n.13, p. 4336-4344, 2003. EPSTEIN, L. et al. Varying Estimates of Sepsis Mortality Using Death Certificates and Administrative Codes — United States, 1999–2014. Mmwr. Morbidity and Mortality Weekly Report, [s.l.], v. 65, n. 13, p.342-345, 8 abr. 2016. Centers for Disease Control MMWR Office. http://dx.doi.org/10.15585/mmwr.mm6513a2. ESCOLA, J.M. et al. Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and onexosomes secreted by human Blymphocytes. The Journal of Biological Chemistry, v.273, n.32, p. 20121-20127, 1998. ESSANDOH, K.; FAN, G. Role of extracellular and intracellular microRNAs in sepsis. Biochimica Et Biophysica Acta (bba) - Molecular Basis of Disease, [s.l.], v. 1842, n. 11, p.2155-2162, nov. 2014. Elsevier BV. DOI: 10.1016/j.bbadis.2014.07.021. Disponível em: <http://api.elsevier.com/ content/article/ PII:S0925443914002336?httpAccept=text/xml>. Acesso em: 10 dez. 2015. FABREGAT, A. et al. The Reactome Pathway Knowledgebase. Nucleic Acids Research, [s.l.], v. 46, n. 1, p.649-655, 14 nov. 2017. Oxford University Press (OUP). http://dx.doi.org/10.1093/nar/gkx1132 FREITAS, F. G. R. et al. The impact of duration of organ dysfunction on the outcome of patients with severe sepsis and septic shock. Clinics, [s.l.], v. 63, n. 4, p.483-488, 2008. FapUNIFESP (SciELO). http://dx.doi.org/10.1590/s1807-59322008000400012. FRIEDMAN, R. C. et al. Most mammalian mRNAs are conserved targets of microRNAs. Genome Research, [s.l.], v. 19, n. 1, p.92-105, 29 out. 2009. Cold Spring Harbor Laboratory. http://dx.doi.org/10.1101/gr.082701.108. GAO, M. et al. Attenuation of Cardiac Dysfunction in Polymicrobial Sepsis by MicroRNA-146a Is Mediated via Targeting of IRAK1 and TRAF6 Expression. The Journal of Immunology, [s.l.], v. 195, n. 2, p.672-682, 5 jun. 2015. The American Association of Immunologists. http://dx.doi.org/10.4049/jimmunol.1403155. GAUDET, P. et al. Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium. Briefings In Bioinformatics, [s.l.], v. 12, n. 5, p.449- 462, 27 ago. 2011. Oxford University Press (OUP). http://dx.doi.org/10.1093/bib/bbr042. Global Sepsis Alliance. WHA adopts resolution on sepsis. Jena, Germany: Global Sepsis Alliance; 2017. Available at: https://www.global-sepsis-alliance.org/news/2017 /5/26/wha-adopts-resolution-on-sepsis. GOODWIN, A. J. et al. Plasma levels of microRNA are altered with the development of shock in human sepsis: an observational study. Critical Care, [s.l.], v. 19, n. 1, p.1-10, dez. 2015. Springer Science + Business Media. http://dx.doi.org/10.1186/s13054-015-1162-8. GRANDER, W.; DÜNSER, M.W. Prolonged inflammation following critical illness may impair long-term survival: a hypothesis with potential therapeutic implications. Medicine Hypotheses. v. 75, n.1, p. 32-34. Jul. 2010. doi: 10.1016/j.mehy.2010.01.020. GREENING, D. W. et al. Proteomic insights into extracellular vesicle biology – defining exosomes and shed microvesicles. Expert Review Of Proteomics, [s.l.], v. 14, n. 1, p.69-95, 28 nov. 2016. Informa UK Limited. HARBARTH, S. et al. Diagnostic Value of Procalcitonin, Interleukin-6, and Interleukin-8 in Critically Ill Patients Admitted with Suspected Sepsis. American Journal of Respiratory and Critical Care Medicine, [s.l.], v. 164, n. 3, p.396-402, ago. 2001. American Thoracic Society. HARRIS H.W. Apolipoprotein E: from Alzheimer's to sepsis. Crit Care Med. 2005;33(11):2696-7. HEIJNEN, H.F. et al. Activeted platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood, v.94, n.11, p. 3791-3799, 1999. HU, Q. et al. Plasma microRNA Profiles as a Potential Biomarker in Differentiating Adult-Onset Still's Disease From Sepsis. Frontiers In Immunology, [s.l.], v. 9, p.1- 20, 11 jan. 2019. Frontiers Media SA. HUANG, J. et al. Identification of MicroRNA as Sepsis Biomarker Based on microRNAs Regulatory Network Analysis. Biomedical Research International, [s.l.], v. 2014, p.1-12, 2014. Hindawi Publishing Corporation. DOI: 10.1155/2014/594350. HUANG Y., YANG N. MicroRNA-20a-5p inhibits epithelial to mesenchymal transition and invasion of endometrial cancer cells by targeting STAT3. International Journal of Clinical and Experimental Pathology 2018;11(12):5715-5724 INSTITUTO LATINO AMERICANO DA SEPSE (ILAS). SPREAD-ED: Sepsis Prevalence Assessment Database in Emergencies Department. 2019. Disponível em: <https://ilas.org.br/spread-ed.php>. Acesso em: 15 out. 2019. IWASHYNA, T.J. et al. Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA. v.304, n.16, p.1787–1794, 2010. KOROSEC, J. H. et al. Long-term outcome and quality of life of patients treated in surgical intensive care: a comparison between sepsis and trauma. Critical Care Medicine. v. 10, n. 5, p.134. 2006. KUHN, A. R. et al. MicroRNA expression in human airway smooth muscle cells: role of miR-25 in regulation of airway smooth muscle phenotype. American journal of respiratory cell and molecular biology, v. 42, n. 4, p. 506-513, 2010. KWAK, S. K.; KIM, J. H. Statistical data preparation: management of missing values and outliers. : management of missing values and outliers. Korean Journal Of Anesthesiology, [s.l.], v. 70, n. 4, p. 407-415, 2017. The Korean Society of Anesthesiologists. LAEMMLI, U. K. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature, [s.l.], v. 227, n. 5259, p.680-685, ago. 1970. Springer Nature. LEE, Y.; EL ANDALOUSSI, S.; WOOD, M.J. Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Human Molecular Genetics, v.21, p. 125-134, 2012. LELUBRE, C.; VINCENT, J. Mechanisms and treatment of organ failure in sepsis. Nature Reviews Nephrology, [s.l.], v. 14, n. 7, p.417-427, 24 abr. 2018. Springer Nature. http://dx.doi.org/10.1038/s41581-018-0005-7. LEO P., McCrea M. Epidemiology. Translational Research in Traumatic Brain Injury. In: Laskowitz D, Grant G, editors. Boca Raton (FL): CRC Press/Taylor and Francis Group; Chapter 1, 2016. LI, T. et al. MicroRNAs modulate the noncanonical transcription factor NF-κB pathway by regulating expression of the kinase IKKα during macrophage differentiation. Nature Immunology, [s.l.], v. 11, n. 9, p.799-805, 15 ago. 2010. Springer Nature. http://dx.doi.org/10.1038/ni.1918. LIN, S.; MILLER, J. D.; YING, S. Intronic MicroRNA (miRNA). Journal of Biomedicine and Biotechnology, [s.l.], v. 2006, p.1-13, 2006. Hindawi Publishing Corporation. DOI: 10.1155/jbb/2006/26818. Disponível em: <http://downloads.hindawi.com/journals/bmri/2006/026818.pdf>. Acesso em: 18 fev. 2016. LIVAK KJ, SCHMITTGEN TD. Analysis of relative gene expression data using realtime quantitative PCR and the 2∆∆C(T) Method. Methods. 2001. 25(4): 402–408. LV, Yan-ni; OU-YANG, Ai-jun; FU, Long-sheng. MicroRNA-27a Negatively Modulates the Inflammatory Response in Lipopolysaccharide-Stimulated Microglia by Targeting TLR4 and IRAK4. Cellular and Molecular Neurobiology, [s.l.], v. 37, n. 2, p.195- 210, 12 mar. 2016. Springer Science and Business Media LLC. MACHADO, F. R et al. The epidemiology of sepsis in Brazilian intensive care units (the Sepsis PREvalence Assessment Database, SPREAD): an observational study. The Lancet Infectious Diseases, [s.l.], v. 17, n. 11, p.1180-1189, nov. 2017. Elsevier BV. http://dx.doi.org/10.1016/s1473-3099(17)30322-5. MANNING, A. J.; KUEHN, M. J. Functional Advantages Conferred by Extracellular Prokaryotic Membrane Vesicles. Journal of Molecular Microbiology and Biotechnology, [s.l.], v. 23, n. 1-2, p. 131-141, 2013. S. Karger AG. MARTÍNEZ, M. C.; ANDRIANTSITOHAINA, R. Extracellular Vesicles in Metabolic Syndrome. Circulation Research, v. 120, n. 10, p. 1674–1686, 2017. MATHIVANAN, S.; JI, H.; SIMPSON, R. J.. Exosomes: Extracellular organelles important in intercellular communication. Journal of Proteomics, [s.l.], v. 73, n. 10, p.1907-1920, set. 2010. Elsevier BV. MESTDAGH, P. et al. A novel and universal method for microRNA RT-qPCR data normalization. Genome Biology, [s.l.], v. 10, n. 6, p.64-70, 2009. Springer Nature. http://dx.doi.org/10.1186/gb-2009-10-6-r64. MINTZ, P. J. et al. MicroRNA - 181a* Targets Nanog in a Subpopulation of CD34+ Cells Isolated From Peripheral Blood. Molecular Therapy – Nucleics Acids,[S.I], v.1, n.8, p.e34, ago. 2012. Nature Publishing Group. doi: 10.1038/mtna.2012.29. MIRBASE. MicroRNA Homo Sapiens. Disponível em: <http://mirbase.org/cgibin/query.pl?terms=homo+sapiens>. Acesso em: 04 abr. 2018. MITTELBRUNN, M; et al. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nature Communications, [s.l.], v. 2, n. 1, p.1-10, 19 abr. 2011. Springer Science and Business Media LLC. MOSTEL, Z., PERL, A., MARCK, M. et al. Post-sepsis syndrome – an evolving entity that afflicts survivors of sepsis. Molecular Medicine 26, 6 (2020). https://doi.org/10.1186/s10020-019-0132-z NOVOSAD, S. A. et al. Vital Signs: Epidemiology of Sepsis. Mmwr. Morbidity And Mortality Weekly Report, [s.l.], v. 65, n. 33, p.864-869, 26 ago. 2016. Centers for Disease Control MMWR Office. http://dx.doi.org/10.15585/mmwr.mm6533e1 O’DRISCOLL, L. Expanding on Exosomes and Ectosomes in Cancer. New England Journal Of Medicine, [s.l.], v. 372, n. 24, p.2359-2362, 11 jun. 2015. Massachusetts Medical Society. http://dx.doi.org/10.1056/nejmcibr1503100. PANT, S.; HILTON, H.; BURCZYNSKI, M.E. The multifaceted exosome: biogenesis, role in normal and aberrant cellular function, and frontiers for pharmacological and biomarker opportunities. Biochemical Pharmacology, v.83, n.11, p. 1484-1494, 2012. PAVLOU, M. et al. Decreased apolipoprotein A1 levels correlate with sepsis and adverse outcome among ICU patients. Critical Care, [s.l.], v. 12, n. 2, p. 201-215, 2008. Springer Science and Business Media LLC. http://dx.doi.org/10.1186/cc6422. PFAFFL M.W, et al. (2004). Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper--Excel-based tool using pair-wise correlations. Biotechnol. Lett. 26: 509-515. http://dx.doi.org/10.1023/B:BILE.0000019559.84305.47 PONTÉN, F; JIRSTRÖM, K; UHLEN, M. The Human Protein Atlas—a tool for pathology. The Journal of Pathology, [s.l.], v. 216, n. 4, p.387-393, 13 out. 2008. Wiley. http://dx.doi.org/10.1002/path.2440. PRESCOTT, H.C. et al. Increased 1-year healthcare use in survivors of severe sepsis. American Journal of Respiratory and Critical Care Medicine. v.190, n.1, p. 62-69. Jul. 2014. Doi: 10.1164/rccm.201403-0471OC. QIAGEN. MiScript® miRNA PCR Array Handbook. Hilden, 2012. 60 p. QUARTIN, A. et al. Magnitude and duration of the effect of sepsis on survival. Department of Veterans Affairs Systemic Sepsis Cooperative Study Group. JAMA. v. 277, p. 1058-1063. 1997. RASHED, M. H. et al. Exosomes: From garbage bins to promising therapeutic targets. International Journal of Molecular Sciences, v. 18, n. 3, 2017. RAVETCH JV, BOLLAND S. IgG Fc receptors. Annu Rev Immunol. 2001;19:275-90 REDZIC, J. et al. Extracellular RNA mediates and marks cancer progression. Seminars In Cancer Biology, [s.l.], v. 28, p.14-23, out. 2014. Elsevier BV. REITHMAIR, M.et al. Cellular and extracellular miRNAs are blood-compartmentspecific diagnostic targets in sepsis. Journal of Cellular and Molecular Medicine, [s.l.], v. 21, n. 10, p. 2403-2411, 6 abr. 2017. Wiley. RHEE, C. et al. Diagnosing sepsis is subjective and highly variable: a survey of intensivists using case vignettes. Critical Care, [s.l.], v. 20, n. 1, p.1266-1269, 6 abr. 2016. Springer Nature. http://dx.doi.org/10.1186/s13054-016-1266-9. RICARTE FILHO, J.C.M.; KIMURA, E. T. MicroRNAs: nova classe de reguladores gênicos envolvidos na função endócrina e câncer. Arquivos Brasileiros de Endocrinologia; Metabologia, [s.l.], v. 50, n. 6, p.1102-1107,2006. FapUNIFESP RICHÉ, F. et al. Protracted immune disorders at one year after ICU discharge in patients with septic shock. Critical Care, [s.l.], v. 22, n. 1, p.1-7, 21 fev. 2018. Springer Science and Business Media LLC. http://dx.doi.org/10.1186/s13054-017- 1934-4. RODERBURG, C. et al. Circulating MicroRNA-150 Serum Levels Predict Survival in Patients with Critical Illness and Sepsis. PLoS ONE, v. 8, n. 1, 2013. RUAN, L.; QIAN, X. MiR-16-5p inhibits breast cancer by reducing AKT3 to restrain NF-κB pathway. Bioscience Reports, [s.l.], v. 39, n. 8, p.327-345, ago. 2019. Portland Press Ltd. RUDD, K. et al. Global, regional, and national sepsis incidence and mortality, 1990– 2017: analysis for the global burden of disease study.: analysis for the Global Burden of Disease Study. The Lancet, [s.l.], v. 395, n. 10219, p. 200-211, jan. 2020. Elsevier BV. SANTILLI, G.; ARONOW, B. J.; SALA, Arturo. Essential Requirement of Apolipoprotein J (Clusterin) Signaling for IκB Expression and Regulation of NF-κB Activity. Journal of Biological Chemistry, [s.l.], v. 278, n. 40, p.38214-38219, 25 jul. 2003. American Society for Biochemistry & Molecular Biology (ASBMB). http://dx.doi.org/10.1074/jbc.c300252200. SCHLOSSER, K. et al. Customized Internal Reference Controls for Improved Assessment of Circulating MicroRNAs in Disease. Plos One, [s.l.], v. 10, n. 5, p.127- 135, 26 maio 2015. Public Library of Science (PLoS). SCHROEDER, H. W.; CAVACINI, Lisa. Structure and function of immunoglobulins. Journal of Allergy and Clinical Immunology, [s.l.], v. 125, n. 2, p.41-52, fev. 2010. Elsevier BV. SCHWECHHEIMER, C.; KUEHN, M. J. Outer-membrane vesicles from Gramnegative bacteria: biogenesis and functions. Nature reviews microbiology, v. 13, n. 10, p. 605-619, 2015. SHAPIRO, A. L.; VIÑUELA, E.; MAIZEL, J. V. Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels. Biochemical and Biophysical Research Communications, [s.l.], v. 28, n. 5, p.815-820, set. 1967. Elsevier BV. SILVA, R. Extracellular vesicle-mediated export of fungal RNA. Scientific Reports, [s.l.], v. 5, n. 1, p. 1-16, 14 jan. 2015. Springer Science and Business Media LLC. SINGER, M. et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). Jama, [s.l.], v. 315, n. 8, p.801-810, 23 fev. 2016. American Medical Association (AMA). http://dx.doi.org/10.1001/jama.2016.0287. SONG, J. et al. Diagnostic and prognostic value of interleukin-6, pentraxin 3, and procalcitonin levels among sepsis and septic shock patients: a prospective controlled study according to the Sepsis-3 definitions. Bmc Infectious Diseases, [s.l.], v. 19, n. 1, p.1-25, 12 nov. 2019. Springer Science and Business Media LLC. STICHT, C. et al. MiRWalk: An online resource for prediction of microRNA binding sites. Plos One, [s.l.], v. 13, n. 10, p.39-48, 18 out. 2018. Public Library of Science (PLoS). http://dx.doi.org/10.1371/journal.pone.0206239. SZILÁGYI B et al. Role of sepsis modulated circulating microRNAs. Electronic Journal of the International Federation of Clinical Chemistry and Laboratory Medicine. 2019;30(2):128–145. Published 2019 Jun 24. TANG B.M et al. Immune Paralysis in Sepsis: Recent Insights and Future Development. In: Vincent JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2018. Annual Update in Intensive Care and Emergency Medicine. Springer, Cham.) TAGANOV K.D. et al. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proceeding of the National Academy of Sciences. 2006;103:12481–6. THERY C.; ZITVOGEL L.; AMIGORENA S. Exossomes: composition, biogenesis and funcion. Nature Reviews Immunology, 2002; 2 : 569-579. THÉRY, C. et al. Indirect activation of naïve CD4+ T cells by dendritic cell–derived exosomes. Nature Immunology, [s.l.], v. 3, n. 12, p.1156-1162, 11 nov. 2002. Springer Science and Business Media LLC. THÉRY, C. et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, [s.l.], v. 7, n. 1, p.153-253, 23 nov. 2018. Informa UK Limited. TILLETT, W. S.. SEROLOGICAL REACTIONS IN PNEUMONIA WITH A NONPROTEIN SOMATIC FRACTION OF PNEUMOCOCCUS. Journal of Experimental Medicine, [s.l.], v. 52, n. 4, p.561-571, 1 out. 1930. Rockefeller University Press. TKACH, M.; THÉRY, C. Communication by Extracellular Vesicles: Where We Are and Where We Need to Go. Cell, [s.l.], v. 164, n. 6, p.1226-1232, mar. 2016. Elsevier BV. TODOROVA, D. et al. Extracellular Vesicles in Angiogenesis. Circulation Research, [s.l.], v. 120, n. 10, p. 1658-1673, 12 maio 2017. Ovid Technologies (Wolters Kluwer Health). TOWBIN, H.; STAEHELIN, T.; GORDON, J.. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications.. Proceedings of the National Academy of Sciences, [s.l.], v. 76, n. 9, p.4350-4354, 1 set. 1979. Proceedings of the National Academy of Sciences. TURCHINOVICH, A. et al. Characterization of extracellular circulating microRNA. Nucleic Acids Research., v.39, n.16, p. 7223-7233. 2011. VAN L. H.J, et al. Lipoprotein metabolism in patients with severe sepsis. Critical Care Medicine. 2003;31(5):1359-66. VANDESOMPELE, J. et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, [s.l.], v. 3, n. 7, p.34-45, 2002. Springer Science and Business Media LLC. http://dx.doi.org/10.1186/gb-2002-3-7-research0034. VARGA, Z. V. et al. MicroRNA-25-dependent up-regulation of NADPH oxidase 4 (NOX4) mediates hypercholesterolemia-induced oxidative/nutritive stress and subsequent dysfunction in the heart. Journal of Molecular and Cellular Cardiology, [s.l.], v. 62, p.111-121, set. 2013. Elsevier BV. VASILESCU, C. et al. MicroRNA Fingerprints Identify miR-150 as a Plasma Prognostic Marker in Patients with Sepsis. Plos One, [s.l.], v. 4, n. 10, p.1-10, 12 out. 2009. Public Library of Science (PLoS). VOS, K. et al. Brain Tumor Microvesicles: Insights into Intercellular Communication in the Nervous System. Cellular and Molecular Neurobiology, [s.l.], v. 31, n. 6, p.949- 959, 8 maio 2011. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s10571-011-9697-y. ZHANG, J. et al. Exosome and Exosomal MicroRNA: Trafficking, Sorting, and Function. Genomics, Proteomics & Bioinformatics, [s.l.], v. 13, n. 1, p.17-24, fev. 2015. WANG, J.F. et al. Serum miR-146a and miR-223 as potential new biomarkers for sepsis. Biochemical Biophysical Research Communications., v.394, n.1, p. 184- 188, 2010. WANG, H. et al. Serum miR-574-5p. Shock, [s.l.], v. 37, n. 3, p.263-267, mar. 2012 . Ovid Technologies (Wolters Kluwer Health). WEBER, Jessica A. et al. The microRNA spectrum in 12 body fluids. Clinical chemistry, v. 56, n. 11, p. 1733-1741, 2010. WEIDHASE, L. et al. Is Interleukin-6 a better predictor of successful antibiotic therapy than procalcitonin and C-reactive protein? A single center study in critically ill adults. BMC Infectious Diseases, [s.l.], v. 19, n. 1, p.1-19, 13 fev. 2019. Springer Science and Business Media LLC. http://dx.doi.org/10.1186/s12879-019-3800-2 WESTPHAL, G. A. et al. Estratégia de detecção precoce e redução de mortalidade na sepse grave. Revista Brasileira de Terapia Intensiva, [s.l.], v. 21, n. 2, p.113- 123, jun. 2009. GN1 Genesis Network. YÁÑEZ-MÓ, M. et al. Biological properties of extracellular vesicles and their physiological functions. Journal of Extracellular Vesicles, v. 4, p. 27066, 2015. ZHAO, C. et al. MiR-15b-5p resensitizes colon cancer cells to 5-fluorouracil by promoting apoptosis via the NF-κB/XIAP axis. Scientific Reports, [s.l.], v. 7, n. 1, p.1-15, 23 jun. 2017. Springer Nature.info:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Cruzeiro do Sulinstname:Universidade Cruzeiro do Sul (UNICSUL)instacron:UNICSULORIGINALTalita Souza Siqueira.pdfTalita Souza Siqueira.pdfteseapplication/pdf849445http://dev.siteworks.com.br:8080/jspui/bitstream/123456789/922/1/Talita%20Souza%20Siqueira.pdfb5009e319d2a3813e641af03e327d926MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://dev.siteworks.com.br:8080/jspui/bitstream/123456789/922/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/9222020-08-25 15:59:16.389oai:repositorio.cruzeirodosul.edu.br:123456789/922Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPRIhttps://repositorio.cruzeirodosul.edu.br/oai/requestmary.pela@unicid.edu.bropendoar:2020-08-25T18:59:16Repositório Institucional da Universidade Cruzeiro do Sul - Universidade Cruzeiro do Sul (UNICSUL)false
dc.title.pt_BR.fl_str_mv MicroRNAs de vesículas extracelulares circulantes como biomarcadores de sobrevida de pacientes sépticos pós alta da Unidade de Terapia Intensiva
dc.title.alternative.pt_BR.fl_str_mv Circulating Extracellular Vesicle MicroRNAs as survival Biomarkers in Septic Patients after Intensive Care Unit Discharge
title MicroRNAs de vesículas extracelulares circulantes como biomarcadores de sobrevida de pacientes sépticos pós alta da Unidade de Terapia Intensiva
spellingShingle MicroRNAs de vesículas extracelulares circulantes como biomarcadores de sobrevida de pacientes sépticos pós alta da Unidade de Terapia Intensiva
Souza-Siqueira, Talita
CNPQ::CIENCIAS DA SAUDE
Inflamação
miR-15b-5p
miR-146a-5p
miR-223-3p
miR-195-5p
Septicemia.
title_short MicroRNAs de vesículas extracelulares circulantes como biomarcadores de sobrevida de pacientes sépticos pós alta da Unidade de Terapia Intensiva
title_full MicroRNAs de vesículas extracelulares circulantes como biomarcadores de sobrevida de pacientes sépticos pós alta da Unidade de Terapia Intensiva
title_fullStr MicroRNAs de vesículas extracelulares circulantes como biomarcadores de sobrevida de pacientes sépticos pós alta da Unidade de Terapia Intensiva
title_full_unstemmed MicroRNAs de vesículas extracelulares circulantes como biomarcadores de sobrevida de pacientes sépticos pós alta da Unidade de Terapia Intensiva
title_sort MicroRNAs de vesículas extracelulares circulantes como biomarcadores de sobrevida de pacientes sépticos pós alta da Unidade de Terapia Intensiva
author Souza-Siqueira, Talita
author_facet Souza-Siqueira, Talita
author_role author
dc.contributor.advisor1.fl_str_mv Soriano, Francisco Garcia
dc.contributor.advisor1ID.fl_str_mv 04768281800
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/8979781390135332
dc.contributor.authorID.fl_str_mv 06601333930
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/
dc.contributor.author.fl_str_mv Souza-Siqueira, Talita
contributor_str_mv Soriano, Francisco Garcia
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS DA SAUDE
topic CNPQ::CIENCIAS DA SAUDE
Inflamação
miR-15b-5p
miR-146a-5p
miR-223-3p
miR-195-5p
Septicemia.
dc.subject.por.fl_str_mv Inflamação
miR-15b-5p
miR-146a-5p
miR-223-3p
miR-195-5p
Septicemia.
description Apesar dos estudos já realizados sobre microRNAs (miRNAs) durante a sepse, pouco se sabe sobre a expressão desses após a alta hospitalar. Esse estudo teve como objetivo avaliar proteínas e miRNAs nas vesículas extracelulares (VEs) plasmáticas de pacientes sépticos em seis fases: a) fase aguda (entre o primeiro e o 4º dia de internação), b) no momento de alta da Unidade de Terapia Intensiva (UTI) e c) após 3 meses da alta da UTI, d) 6 meses, e) 12 meses, e f) 3 anos. Os dados dos miRNAs das VEs foram correlacionados com aqueles da concentração plasmática de citocinas (pró- e anti-inflamatórias). Os pacientes desenvolveram um estado basal crônico de inflamação de baixa intensidade, quando comparados ao grupo controle, com valores ligeiramente aumentados de IL-6, IL-8 e proteína C reativa no plasma mesmo após 3 anos da alta. As VEs plasmáticas isoladas por ultracentrifugação apresentaram tamanho e composição de proteínas características. A composição proteica variou entre os estados saudável e de sepse além de também ser diferente entre os pacientes que sobreviveram e os que foram a óbito. Baseado nos dados da proteômica, as VEs são oriundas do sistema linfóide, linfócitos B e baço, medula óssea e hepatócitos. Quinze miRNAs foram encontrados nas VEs plasmáticas dos pacientes sépticos e controles: miRNAs miR-15b-5p, -16- 5p, -20a-5p, -21-5p, -25-3p, -27a-3p, -29a-3p, -30d-5p, -93-5p, -126-3p -146a-5p, - 148a-3p, -191-5p, -195-5p e -223-3p. A redução da expressão de treze miRNAs (miR-15b-5p, -16-5p, -20a-5p, -25-3p, -27a-3p, -29a-3p, -30d-5p, -93-5p, -146a-5p, - 148a-3p, -191-5p, -195-5p e -223-3p) na fase aguda da sepse (internação na UTI) foi mais intensa nos pacientes que foram a óbito do que nos sobreviventes. Isso indica que esses 13 miRNAs podem ser usados como biomarcadores plasmáticos de prognóstico de sobrevida na sepse. A redução na expressão dos miRNAs -15b-5p, - 16-5p, -25-3p, -27a-3p, -29a-3p, -30d-5p, -93-5p, -195-5p e -223-3p durante a fase aguda se manteve até um ano após a alta da UTI, mas houve reversão após três anos, retornando aos valores dos controles. Esses nove miRNAs podem ser utilizados como biomarcadores plasmáticos da evolução e recuperação dos pacientes sépticos após alta hospitalar.
publishDate 2020
dc.date.accessioned.fl_str_mv 2020-08-25T18:57:25Z
dc.date.available.fl_str_mv 2020-06-29
2020-08-25T18:57:25Z
dc.date.issued.fl_str_mv 2020-04-27
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SOUZA-SIQUEIRA, T. MicroRNAs de vesículas extracelulares circulantes como biomarcadores de sobrevida de pacientes sépticos pós alta da Unidade de Terapia Intensiva. 2020. 99 f. Tese (Doutorado Interdisciplinar em Ciências da Saúde) - Universidade Cruzeiro do Sul, São Paulo – 2020.
dc.identifier.uri.fl_str_mv https://repositorio.cruzeirodosul.edu.br/handle/123456789/922
identifier_str_mv SOUZA-SIQUEIRA, T. MicroRNAs de vesículas extracelulares circulantes como biomarcadores de sobrevida de pacientes sépticos pós alta da Unidade de Terapia Intensiva. 2020. 99 f. Tese (Doutorado Interdisciplinar em Ciências da Saúde) - Universidade Cruzeiro do Sul, São Paulo – 2020.
url https://repositorio.cruzeirodosul.edu.br/handle/123456789/922
dc.language.iso.fl_str_mv por
language por
dc.relation.references.pt_BR.fl_str_mv A NAHID, Md; SATOH, M.; CHAN, E Kl. MicroRNA in TLR signaling and endotoxin tolerance. Cellular & Molecular Immunology, [s.l.], v. 8, n. 5, p.388-403, 8 ago. 2011. Springer Science and Business Media LLC. ABBAS, A. K.; LICHTMAN, A. H.; PILLAI, S. H. I. V. Imunologia celular e molecular. 7. ed. Rio de Janeiro: Elsevier, 2012. ANDERSEN, C. L.; JENSEN, J. L.; ØRNTOFT, T. F.. Normalization of Real-Time Quantitative Reverse Transcription-PCR Data: A Model-Based Variance Estimation Approach to Identify Genes Suited for Normalization, Applied to Bladder and Colon. Cancer Research, [s.l.], v. 64, n. 15, p. 5245-5250, 1 ago. 2004. American Association for Cancer Research (AACR). ANGUS, D.C. et al. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Critical Care Medicine. v. 29, n.7, p.1303–1310, 2001. ANTONYAK, M. A.; CERIONE, R. A.. Microvesicles as Mediators of Intercellular Communication in Cancer. Methods In Molecular Biology, [s.l.], p.147-173, 2014. Springer New York. BAEK, D. et al. The impact of microRNAs on protein output. Nature, [s.l.], v. 455, n. 7209, p. 64-71, 30 jul. 2008. Springer Science and Business Media LLC. BARTEL, David P.. MicroRNAs: Target Recognition and Regulatory Functions. Cell, [s.l.], v. 136, n. 2, p.215-233, jan. 2009. Elsevier BV. BEALE, R. et al. PROGRESS Advisory Board. Promoting Global Research Excellence in Severe Sepsis (PROGRESS): lessons from an international sepsis registry. Infection. v. 37, n. 3, p. 222-32. Jun. 2009. BENZ, F. et al. Circulating microRNAs as biomarkers for sepsis. International journal of molecular sciences, v. 17, n. 1, p. 78, 2016. BENEYTO, L. A. P. et al. Valor pronóstico de la interleucina 6 en la mortalidad de pacientes con sepsis. Medicina Clínica, [s.l.], v. 147, n. 7, p.281-286, out. 2016. Elsevier BV. http://dx.doi.org/10.1016/j.medcli.2016.06.001. BRADLEY, D. et al. Clusterin Impairs Hepatic Insulin Sensitivity and Adipocyte Clusterin Associates With Cardiometabolic Risk. Diabetes Care, [s.l.], v. 42, n. 3, p.466-475, 18 jan. 2019. American Diabetes Association. CARNELL-MORRIS, P. et al. Analysis of Extracellular Vesicles Using Fluorescence Nanoparticle Tracking Analysis. Methods In Molecular Biology, [s.l.], p.153-173, 2017. Springer New York. http://dx.doi.org/10.1007/978-1-4939-7253-1_13. CARREIRAS, F. B. microRNA-155 mediates sepsis-associated cardiovascular dysfunction. 2015. 86 f. Dissertação (Mestrado) - Curso de Fisiopatologia Cardiovascular, Faculdade de Medicina da Universidade do Porto.Portugal, 2015. CASERTA, S. et al. Circulating plasma microRNAs can differentiate human sepsis and systemic inflammatory response syndrome (SIRS). Scientific reports, v. 6, p. 28006, 2016. CENTERS FOR DISEASE CONTROL (CDC)/ NCHS, National Hospital Discharge Survey: Rates per 10,000 populations of first-listed and any-listed diagnosis of septicemia or sepsis discharges: United States, 2000-2010. CHAHAR, Harendra; BAO, Xiaoyong; CASOLA, Antonella. Exosomes and Their Role in the Life Cycle and Pathogenesis of RNA Viruses. Viruses, [s.l.], v. 7, n. 6, p. 3204- 3225, 19 jun. 2015. MDPI AG. CHARCHAFLIEH, Jean et al. Activated complement factors as disease markers for sepsis. Disease markers, v. 2015, 2015. CHEN, X. et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Research - Nature, v.18, n.10, p.997-1006, 2008. CLANCY, J. W.; et al. Tumor-derived microvesicles in the tumor microenvironment: How vesicle heterogeneity can shape the future of a rapidly expanding field. Bioessays, [s.l.], v. 37, n. 12, p.1309-1316, 6 out. 2015. Wiley. COCUCCI, E.; MELDOLESI, J. Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends In Cell Biology, [s.l.], v. 25, n. 6, p.364-372, jun. 2015. Elsevier BV. COSENZA, S. et al. Pathogenic or Therapeutic Extracellular Vesicles in Rheumatic Diseases: Role of Mesenchymal Stem Cell-Derived Vesicles. International Journal of Molecular Sciences, v. 18, n. 4, p. 889, 2017. CHISTIAKOV, D. A. et al. Extracellular vesicles and atherosclerotic disease. Cellular and Molecular Life Sciences, v. 72, n. 14, p. 2697–2708, 2015. CUI, Yao-li et al. Interleukin-18 and miR-130a in severe sepsis patients with thrombocytopenia. Patient Preference and Adherence, [s.l.], p.313-320, mar. 2016. Dove Medical Press Ltd. http://dx.doi.org/10.2147/ppa.s95588. D’SOUZA-SCHOREY, C.; SCHOREY, J. Regulation and mechanisms of extracellular vesicle biogenesis and secretion. Essays In Biochemistry, [s.l.], v. 62, n. 2, p.125-133, 17 abr. 2018. Portland Press Ltd. DANTES, R. B; EPSTEIN, L. Combatting Sepsis: A Public Health Perspective. Clinical Infectious Diseases, [s.l.], v. 00, n. , p.1-3, 29 maio 2018. Oxford University Press (OUP). http://dx.doi.org/10.1093/cid/ciy342. DASU, M.R. et al. Toll-Like Receptors in Wound Healing: Location, Accessibility, and Timing. Journal of Investigative Dermatology, [s.l.], v. 132, n. 8, p.1955-1958, ago. 2012. DOI: 10.1038/jid.2012.208 DE GASSART, A. et al. Lipid raft-associated protein sorting in exosomes. Blood, v.102, n.13, p. 4336-4344, 2003. EPSTEIN, L. et al. Varying Estimates of Sepsis Mortality Using Death Certificates and Administrative Codes — United States, 1999–2014. Mmwr. Morbidity and Mortality Weekly Report, [s.l.], v. 65, n. 13, p.342-345, 8 abr. 2016. Centers for Disease Control MMWR Office. http://dx.doi.org/10.15585/mmwr.mm6513a2. ESCOLA, J.M. et al. Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and onexosomes secreted by human Blymphocytes. The Journal of Biological Chemistry, v.273, n.32, p. 20121-20127, 1998. ESSANDOH, K.; FAN, G. Role of extracellular and intracellular microRNAs in sepsis. Biochimica Et Biophysica Acta (bba) - Molecular Basis of Disease, [s.l.], v. 1842, n. 11, p.2155-2162, nov. 2014. Elsevier BV. DOI: 10.1016/j.bbadis.2014.07.021. Disponível em: <http://api.elsevier.com/ content/article/ PII:S0925443914002336?httpAccept=text/xml>. Acesso em: 10 dez. 2015. FABREGAT, A. et al. The Reactome Pathway Knowledgebase. Nucleic Acids Research, [s.l.], v. 46, n. 1, p.649-655, 14 nov. 2017. Oxford University Press (OUP). http://dx.doi.org/10.1093/nar/gkx1132 FREITAS, F. G. R. et al. The impact of duration of organ dysfunction on the outcome of patients with severe sepsis and septic shock. Clinics, [s.l.], v. 63, n. 4, p.483-488, 2008. FapUNIFESP (SciELO). http://dx.doi.org/10.1590/s1807-59322008000400012. FRIEDMAN, R. C. et al. Most mammalian mRNAs are conserved targets of microRNAs. Genome Research, [s.l.], v. 19, n. 1, p.92-105, 29 out. 2009. Cold Spring Harbor Laboratory. http://dx.doi.org/10.1101/gr.082701.108. GAO, M. et al. Attenuation of Cardiac Dysfunction in Polymicrobial Sepsis by MicroRNA-146a Is Mediated via Targeting of IRAK1 and TRAF6 Expression. The Journal of Immunology, [s.l.], v. 195, n. 2, p.672-682, 5 jun. 2015. The American Association of Immunologists. http://dx.doi.org/10.4049/jimmunol.1403155. GAUDET, P. et al. Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium. Briefings In Bioinformatics, [s.l.], v. 12, n. 5, p.449- 462, 27 ago. 2011. Oxford University Press (OUP). http://dx.doi.org/10.1093/bib/bbr042. Global Sepsis Alliance. WHA adopts resolution on sepsis. Jena, Germany: Global Sepsis Alliance; 2017. Available at: https://www.global-sepsis-alliance.org/news/2017 /5/26/wha-adopts-resolution-on-sepsis. GOODWIN, A. J. et al. Plasma levels of microRNA are altered with the development of shock in human sepsis: an observational study. Critical Care, [s.l.], v. 19, n. 1, p.1-10, dez. 2015. Springer Science + Business Media. http://dx.doi.org/10.1186/s13054-015-1162-8. GRANDER, W.; DÜNSER, M.W. Prolonged inflammation following critical illness may impair long-term survival: a hypothesis with potential therapeutic implications. Medicine Hypotheses. v. 75, n.1, p. 32-34. Jul. 2010. doi: 10.1016/j.mehy.2010.01.020. GREENING, D. W. et al. Proteomic insights into extracellular vesicle biology – defining exosomes and shed microvesicles. Expert Review Of Proteomics, [s.l.], v. 14, n. 1, p.69-95, 28 nov. 2016. Informa UK Limited. HARBARTH, S. et al. Diagnostic Value of Procalcitonin, Interleukin-6, and Interleukin-8 in Critically Ill Patients Admitted with Suspected Sepsis. American Journal of Respiratory and Critical Care Medicine, [s.l.], v. 164, n. 3, p.396-402, ago. 2001. American Thoracic Society. HARRIS H.W. Apolipoprotein E: from Alzheimer's to sepsis. Crit Care Med. 2005;33(11):2696-7. HEIJNEN, H.F. et al. Activeted platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood, v.94, n.11, p. 3791-3799, 1999. HU, Q. et al. Plasma microRNA Profiles as a Potential Biomarker in Differentiating Adult-Onset Still's Disease From Sepsis. Frontiers In Immunology, [s.l.], v. 9, p.1- 20, 11 jan. 2019. Frontiers Media SA. HUANG, J. et al. Identification of MicroRNA as Sepsis Biomarker Based on microRNAs Regulatory Network Analysis. Biomedical Research International, [s.l.], v. 2014, p.1-12, 2014. Hindawi Publishing Corporation. DOI: 10.1155/2014/594350. HUANG Y., YANG N. MicroRNA-20a-5p inhibits epithelial to mesenchymal transition and invasion of endometrial cancer cells by targeting STAT3. International Journal of Clinical and Experimental Pathology 2018;11(12):5715-5724 INSTITUTO LATINO AMERICANO DA SEPSE (ILAS). SPREAD-ED: Sepsis Prevalence Assessment Database in Emergencies Department. 2019. Disponível em: <https://ilas.org.br/spread-ed.php>. Acesso em: 15 out. 2019. IWASHYNA, T.J. et al. Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA. v.304, n.16, p.1787–1794, 2010. KOROSEC, J. H. et al. Long-term outcome and quality of life of patients treated in surgical intensive care: a comparison between sepsis and trauma. Critical Care Medicine. v. 10, n. 5, p.134. 2006. KUHN, A. R. et al. MicroRNA expression in human airway smooth muscle cells: role of miR-25 in regulation of airway smooth muscle phenotype. American journal of respiratory cell and molecular biology, v. 42, n. 4, p. 506-513, 2010. KWAK, S. K.; KIM, J. H. Statistical data preparation: management of missing values and outliers. : management of missing values and outliers. Korean Journal Of Anesthesiology, [s.l.], v. 70, n. 4, p. 407-415, 2017. The Korean Society of Anesthesiologists. LAEMMLI, U. K. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature, [s.l.], v. 227, n. 5259, p.680-685, ago. 1970. Springer Nature. LEE, Y.; EL ANDALOUSSI, S.; WOOD, M.J. Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Human Molecular Genetics, v.21, p. 125-134, 2012. LELUBRE, C.; VINCENT, J. Mechanisms and treatment of organ failure in sepsis. Nature Reviews Nephrology, [s.l.], v. 14, n. 7, p.417-427, 24 abr. 2018. Springer Nature. http://dx.doi.org/10.1038/s41581-018-0005-7. LEO P., McCrea M. Epidemiology. Translational Research in Traumatic Brain Injury. In: Laskowitz D, Grant G, editors. Boca Raton (FL): CRC Press/Taylor and Francis Group; Chapter 1, 2016. LI, T. et al. MicroRNAs modulate the noncanonical transcription factor NF-κB pathway by regulating expression of the kinase IKKα during macrophage differentiation. Nature Immunology, [s.l.], v. 11, n. 9, p.799-805, 15 ago. 2010. Springer Nature. http://dx.doi.org/10.1038/ni.1918. LIN, S.; MILLER, J. D.; YING, S. Intronic MicroRNA (miRNA). Journal of Biomedicine and Biotechnology, [s.l.], v. 2006, p.1-13, 2006. Hindawi Publishing Corporation. DOI: 10.1155/jbb/2006/26818. Disponível em: <http://downloads.hindawi.com/journals/bmri/2006/026818.pdf>. Acesso em: 18 fev. 2016. LIVAK KJ, SCHMITTGEN TD. Analysis of relative gene expression data using realtime quantitative PCR and the 2∆∆C(T) Method. Methods. 2001. 25(4): 402–408. LV, Yan-ni; OU-YANG, Ai-jun; FU, Long-sheng. MicroRNA-27a Negatively Modulates the Inflammatory Response in Lipopolysaccharide-Stimulated Microglia by Targeting TLR4 and IRAK4. Cellular and Molecular Neurobiology, [s.l.], v. 37, n. 2, p.195- 210, 12 mar. 2016. Springer Science and Business Media LLC. MACHADO, F. R et al. The epidemiology of sepsis in Brazilian intensive care units (the Sepsis PREvalence Assessment Database, SPREAD): an observational study. The Lancet Infectious Diseases, [s.l.], v. 17, n. 11, p.1180-1189, nov. 2017. Elsevier BV. http://dx.doi.org/10.1016/s1473-3099(17)30322-5. MANNING, A. J.; KUEHN, M. J. Functional Advantages Conferred by Extracellular Prokaryotic Membrane Vesicles. Journal of Molecular Microbiology and Biotechnology, [s.l.], v. 23, n. 1-2, p. 131-141, 2013. S. Karger AG. MARTÍNEZ, M. C.; ANDRIANTSITOHAINA, R. Extracellular Vesicles in Metabolic Syndrome. Circulation Research, v. 120, n. 10, p. 1674–1686, 2017. MATHIVANAN, S.; JI, H.; SIMPSON, R. J.. Exosomes: Extracellular organelles important in intercellular communication. Journal of Proteomics, [s.l.], v. 73, n. 10, p.1907-1920, set. 2010. Elsevier BV. MESTDAGH, P. et al. A novel and universal method for microRNA RT-qPCR data normalization. Genome Biology, [s.l.], v. 10, n. 6, p.64-70, 2009. Springer Nature. http://dx.doi.org/10.1186/gb-2009-10-6-r64. MINTZ, P. J. et al. MicroRNA - 181a* Targets Nanog in a Subpopulation of CD34+ Cells Isolated From Peripheral Blood. Molecular Therapy – Nucleics Acids,[S.I], v.1, n.8, p.e34, ago. 2012. Nature Publishing Group. doi: 10.1038/mtna.2012.29. MIRBASE. MicroRNA Homo Sapiens. Disponível em: <http://mirbase.org/cgibin/query.pl?terms=homo+sapiens>. Acesso em: 04 abr. 2018. MITTELBRUNN, M; et al. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nature Communications, [s.l.], v. 2, n. 1, p.1-10, 19 abr. 2011. Springer Science and Business Media LLC. MOSTEL, Z., PERL, A., MARCK, M. et al. Post-sepsis syndrome – an evolving entity that afflicts survivors of sepsis. Molecular Medicine 26, 6 (2020). https://doi.org/10.1186/s10020-019-0132-z NOVOSAD, S. A. et al. Vital Signs: Epidemiology of Sepsis. Mmwr. Morbidity And Mortality Weekly Report, [s.l.], v. 65, n. 33, p.864-869, 26 ago. 2016. Centers for Disease Control MMWR Office. http://dx.doi.org/10.15585/mmwr.mm6533e1 O’DRISCOLL, L. Expanding on Exosomes and Ectosomes in Cancer. New England Journal Of Medicine, [s.l.], v. 372, n. 24, p.2359-2362, 11 jun. 2015. Massachusetts Medical Society. http://dx.doi.org/10.1056/nejmcibr1503100. PANT, S.; HILTON, H.; BURCZYNSKI, M.E. The multifaceted exosome: biogenesis, role in normal and aberrant cellular function, and frontiers for pharmacological and biomarker opportunities. Biochemical Pharmacology, v.83, n.11, p. 1484-1494, 2012. PAVLOU, M. et al. Decreased apolipoprotein A1 levels correlate with sepsis and adverse outcome among ICU patients. Critical Care, [s.l.], v. 12, n. 2, p. 201-215, 2008. Springer Science and Business Media LLC. http://dx.doi.org/10.1186/cc6422. PFAFFL M.W, et al. (2004). Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper--Excel-based tool using pair-wise correlations. Biotechnol. Lett. 26: 509-515. http://dx.doi.org/10.1023/B:BILE.0000019559.84305.47 PONTÉN, F; JIRSTRÖM, K; UHLEN, M. The Human Protein Atlas—a tool for pathology. The Journal of Pathology, [s.l.], v. 216, n. 4, p.387-393, 13 out. 2008. Wiley. http://dx.doi.org/10.1002/path.2440. PRESCOTT, H.C. et al. Increased 1-year healthcare use in survivors of severe sepsis. American Journal of Respiratory and Critical Care Medicine. v.190, n.1, p. 62-69. Jul. 2014. Doi: 10.1164/rccm.201403-0471OC. QIAGEN. MiScript® miRNA PCR Array Handbook. Hilden, 2012. 60 p. QUARTIN, A. et al. Magnitude and duration of the effect of sepsis on survival. Department of Veterans Affairs Systemic Sepsis Cooperative Study Group. JAMA. v. 277, p. 1058-1063. 1997. RASHED, M. H. et al. Exosomes: From garbage bins to promising therapeutic targets. International Journal of Molecular Sciences, v. 18, n. 3, 2017. RAVETCH JV, BOLLAND S. IgG Fc receptors. Annu Rev Immunol. 2001;19:275-90 REDZIC, J. et al. Extracellular RNA mediates and marks cancer progression. Seminars In Cancer Biology, [s.l.], v. 28, p.14-23, out. 2014. Elsevier BV. REITHMAIR, M.et al. Cellular and extracellular miRNAs are blood-compartmentspecific diagnostic targets in sepsis. Journal of Cellular and Molecular Medicine, [s.l.], v. 21, n. 10, p. 2403-2411, 6 abr. 2017. Wiley. RHEE, C. et al. Diagnosing sepsis is subjective and highly variable: a survey of intensivists using case vignettes. Critical Care, [s.l.], v. 20, n. 1, p.1266-1269, 6 abr. 2016. Springer Nature. http://dx.doi.org/10.1186/s13054-016-1266-9. RICARTE FILHO, J.C.M.; KIMURA, E. T. MicroRNAs: nova classe de reguladores gênicos envolvidos na função endócrina e câncer. Arquivos Brasileiros de Endocrinologia; Metabologia, [s.l.], v. 50, n. 6, p.1102-1107,2006. FapUNIFESP RICHÉ, F. et al. Protracted immune disorders at one year after ICU discharge in patients with septic shock. Critical Care, [s.l.], v. 22, n. 1, p.1-7, 21 fev. 2018. Springer Science and Business Media LLC. http://dx.doi.org/10.1186/s13054-017- 1934-4. RODERBURG, C. et al. Circulating MicroRNA-150 Serum Levels Predict Survival in Patients with Critical Illness and Sepsis. PLoS ONE, v. 8, n. 1, 2013. RUAN, L.; QIAN, X. MiR-16-5p inhibits breast cancer by reducing AKT3 to restrain NF-κB pathway. Bioscience Reports, [s.l.], v. 39, n. 8, p.327-345, ago. 2019. Portland Press Ltd. RUDD, K. et al. Global, regional, and national sepsis incidence and mortality, 1990– 2017: analysis for the global burden of disease study.: analysis for the Global Burden of Disease Study. The Lancet, [s.l.], v. 395, n. 10219, p. 200-211, jan. 2020. Elsevier BV. SANTILLI, G.; ARONOW, B. J.; SALA, Arturo. Essential Requirement of Apolipoprotein J (Clusterin) Signaling for IκB Expression and Regulation of NF-κB Activity. Journal of Biological Chemistry, [s.l.], v. 278, n. 40, p.38214-38219, 25 jul. 2003. American Society for Biochemistry & Molecular Biology (ASBMB). http://dx.doi.org/10.1074/jbc.c300252200. SCHLOSSER, K. et al. Customized Internal Reference Controls for Improved Assessment of Circulating MicroRNAs in Disease. Plos One, [s.l.], v. 10, n. 5, p.127- 135, 26 maio 2015. Public Library of Science (PLoS). SCHROEDER, H. W.; CAVACINI, Lisa. Structure and function of immunoglobulins. Journal of Allergy and Clinical Immunology, [s.l.], v. 125, n. 2, p.41-52, fev. 2010. Elsevier BV. SCHWECHHEIMER, C.; KUEHN, M. J. Outer-membrane vesicles from Gramnegative bacteria: biogenesis and functions. Nature reviews microbiology, v. 13, n. 10, p. 605-619, 2015. SHAPIRO, A. L.; VIÑUELA, E.; MAIZEL, J. V. Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels. Biochemical and Biophysical Research Communications, [s.l.], v. 28, n. 5, p.815-820, set. 1967. Elsevier BV. SILVA, R. Extracellular vesicle-mediated export of fungal RNA. Scientific Reports, [s.l.], v. 5, n. 1, p. 1-16, 14 jan. 2015. Springer Science and Business Media LLC. SINGER, M. et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). Jama, [s.l.], v. 315, n. 8, p.801-810, 23 fev. 2016. American Medical Association (AMA). http://dx.doi.org/10.1001/jama.2016.0287. SONG, J. et al. Diagnostic and prognostic value of interleukin-6, pentraxin 3, and procalcitonin levels among sepsis and septic shock patients: a prospective controlled study according to the Sepsis-3 definitions. Bmc Infectious Diseases, [s.l.], v. 19, n. 1, p.1-25, 12 nov. 2019. Springer Science and Business Media LLC. STICHT, C. et al. MiRWalk: An online resource for prediction of microRNA binding sites. Plos One, [s.l.], v. 13, n. 10, p.39-48, 18 out. 2018. Public Library of Science (PLoS). http://dx.doi.org/10.1371/journal.pone.0206239. SZILÁGYI B et al. Role of sepsis modulated circulating microRNAs. Electronic Journal of the International Federation of Clinical Chemistry and Laboratory Medicine. 2019;30(2):128–145. Published 2019 Jun 24. TANG B.M et al. Immune Paralysis in Sepsis: Recent Insights and Future Development. In: Vincent JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2018. Annual Update in Intensive Care and Emergency Medicine. Springer, Cham.) TAGANOV K.D. et al. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proceeding of the National Academy of Sciences. 2006;103:12481–6. THERY C.; ZITVOGEL L.; AMIGORENA S. Exossomes: composition, biogenesis and funcion. Nature Reviews Immunology, 2002; 2 : 569-579. THÉRY, C. et al. Indirect activation of naïve CD4+ T cells by dendritic cell–derived exosomes. Nature Immunology, [s.l.], v. 3, n. 12, p.1156-1162, 11 nov. 2002. Springer Science and Business Media LLC. THÉRY, C. et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, [s.l.], v. 7, n. 1, p.153-253, 23 nov. 2018. Informa UK Limited. TILLETT, W. S.. SEROLOGICAL REACTIONS IN PNEUMONIA WITH A NONPROTEIN SOMATIC FRACTION OF PNEUMOCOCCUS. Journal of Experimental Medicine, [s.l.], v. 52, n. 4, p.561-571, 1 out. 1930. Rockefeller University Press. TKACH, M.; THÉRY, C. Communication by Extracellular Vesicles: Where We Are and Where We Need to Go. Cell, [s.l.], v. 164, n. 6, p.1226-1232, mar. 2016. Elsevier BV. TODOROVA, D. et al. Extracellular Vesicles in Angiogenesis. Circulation Research, [s.l.], v. 120, n. 10, p. 1658-1673, 12 maio 2017. Ovid Technologies (Wolters Kluwer Health). TOWBIN, H.; STAEHELIN, T.; GORDON, J.. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications.. Proceedings of the National Academy of Sciences, [s.l.], v. 76, n. 9, p.4350-4354, 1 set. 1979. Proceedings of the National Academy of Sciences. TURCHINOVICH, A. et al. Characterization of extracellular circulating microRNA. Nucleic Acids Research., v.39, n.16, p. 7223-7233. 2011. VAN L. H.J, et al. Lipoprotein metabolism in patients with severe sepsis. Critical Care Medicine. 2003;31(5):1359-66. VANDESOMPELE, J. et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, [s.l.], v. 3, n. 7, p.34-45, 2002. Springer Science and Business Media LLC. http://dx.doi.org/10.1186/gb-2002-3-7-research0034. VARGA, Z. V. et al. MicroRNA-25-dependent up-regulation of NADPH oxidase 4 (NOX4) mediates hypercholesterolemia-induced oxidative/nutritive stress and subsequent dysfunction in the heart. Journal of Molecular and Cellular Cardiology, [s.l.], v. 62, p.111-121, set. 2013. Elsevier BV. VASILESCU, C. et al. MicroRNA Fingerprints Identify miR-150 as a Plasma Prognostic Marker in Patients with Sepsis. Plos One, [s.l.], v. 4, n. 10, p.1-10, 12 out. 2009. Public Library of Science (PLoS). VOS, K. et al. Brain Tumor Microvesicles: Insights into Intercellular Communication in the Nervous System. Cellular and Molecular Neurobiology, [s.l.], v. 31, n. 6, p.949- 959, 8 maio 2011. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s10571-011-9697-y. ZHANG, J. et al. Exosome and Exosomal MicroRNA: Trafficking, Sorting, and Function. Genomics, Proteomics & Bioinformatics, [s.l.], v. 13, n. 1, p.17-24, fev. 2015. WANG, J.F. et al. Serum miR-146a and miR-223 as potential new biomarkers for sepsis. Biochemical Biophysical Research Communications., v.394, n.1, p. 184- 188, 2010. WANG, H. et al. Serum miR-574-5p. Shock, [s.l.], v. 37, n. 3, p.263-267, mar. 2012 . Ovid Technologies (Wolters Kluwer Health). WEBER, Jessica A. et al. The microRNA spectrum in 12 body fluids. Clinical chemistry, v. 56, n. 11, p. 1733-1741, 2010. WEIDHASE, L. et al. Is Interleukin-6 a better predictor of successful antibiotic therapy than procalcitonin and C-reactive protein? A single center study in critically ill adults. BMC Infectious Diseases, [s.l.], v. 19, n. 1, p.1-19, 13 fev. 2019. Springer Science and Business Media LLC. http://dx.doi.org/10.1186/s12879-019-3800-2 WESTPHAL, G. A. et al. Estratégia de detecção precoce e redução de mortalidade na sepse grave. Revista Brasileira de Terapia Intensiva, [s.l.], v. 21, n. 2, p.113- 123, jun. 2009. GN1 Genesis Network. YÁÑEZ-MÓ, M. et al. Biological properties of extracellular vesicles and their physiological functions. Journal of Extracellular Vesicles, v. 4, p. 27066, 2015. ZHAO, C. et al. MiR-15b-5p resensitizes colon cancer cells to 5-fluorouracil by promoting apoptosis via the NF-κB/XIAP axis. Scientific Reports, [s.l.], v. 7, n. 1, p.1-15, 23 jun. 2017. Springer Nature.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Cruzeiro do Sul
dc.publisher.program.fl_str_mv Programa de Pós Graduação Interdisciplinar em Ciências da Saúde
dc.publisher.initials.fl_str_mv Cruzeiro do Sul
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Cruzeiro do Sul
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Cruzeiro do Sul
instname:Universidade Cruzeiro do Sul (UNICSUL)
instacron:UNICSUL
instname_str Universidade Cruzeiro do Sul (UNICSUL)
instacron_str UNICSUL
institution UNICSUL
reponame_str Repositório Institucional da Universidade Cruzeiro do Sul
collection Repositório Institucional da Universidade Cruzeiro do Sul
bitstream.url.fl_str_mv http://dev.siteworks.com.br:8080/jspui/bitstream/123456789/922/1/Talita%20Souza%20Siqueira.pdf
http://dev.siteworks.com.br:8080/jspui/bitstream/123456789/922/2/license.txt
bitstream.checksum.fl_str_mv b5009e319d2a3813e641af03e327d926
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Cruzeiro do Sul - Universidade Cruzeiro do Sul (UNICSUL)
repository.mail.fl_str_mv mary.pela@unicid.edu.br
_version_ 1801771135249940480