A systematic literature review on Machine Learning Model evaluation on healthcare applications
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Research, Society and Development |
Texto Completo: | https://rsdjournal.org/index.php/rsd/article/view/42042 |
Resumo: | Machine Learning (ML) models have been applied to solve problems in various fields, which necessarily involves proper evaluation of models to ensure performance. Once deployed, ML models are subject to performance issues, such as those related to changes in data (drift). This type of issue has prompted efforts in model analysis and maintenance, as well as in continual learning, which seeks the ability to continuously learn from a (continuous) stream of data. Therefore, it's important to understand and develop methodologies that can be used to evaluate ML models, making their use in real-world environments feasible. Amongst current areas of application for ML, one that stands out, in particular, is Machine Learning for Healthcare, especially in conjunction with Software for Decision Support of Medical Applications, which presents specific challenges for the evaluation and monitoring of models, particularly given that incorrect prediction or classification can lead to life-threatening situations. This paper presents a systematic literature review that aims at identifying state-of-the-art techniques for evaluating and maintaining ML models for healthcare in effective use in the real world. |
id |
UNIFEI_0a0c5d02cd1bb59c413c1d2be7e62624 |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/42042 |
network_acronym_str |
UNIFEI |
network_name_str |
Research, Society and Development |
repository_id_str |
|
spelling |
A systematic literature review on Machine Learning Model evaluation on healthcare applicationsUna revisión sistemática de la literatura sobre la evaluación de Modelos de Aprendizaje Automático en aplicaciones de saludUma revisão sistemática da literatura sobre avaliação de Modelos de Aprendizado de Máquina em aplicações de saúdeML model validationML for HealthcareML model monitoring.Validación de modelos de AAAA para el sector de la saludMonitoreo de modelos de AA.Validação de modelos de AMAM para a área da saúdeMonitoramento de modelos de AM.Machine Learning (ML) models have been applied to solve problems in various fields, which necessarily involves proper evaluation of models to ensure performance. Once deployed, ML models are subject to performance issues, such as those related to changes in data (drift). This type of issue has prompted efforts in model analysis and maintenance, as well as in continual learning, which seeks the ability to continuously learn from a (continuous) stream of data. Therefore, it's important to understand and develop methodologies that can be used to evaluate ML models, making their use in real-world environments feasible. Amongst current areas of application for ML, one that stands out, in particular, is Machine Learning for Healthcare, especially in conjunction with Software for Decision Support of Medical Applications, which presents specific challenges for the evaluation and monitoring of models, particularly given that incorrect prediction or classification can lead to life-threatening situations. This paper presents a systematic literature review that aims at identifying state-of-the-art techniques for evaluating and maintaining ML models for healthcare in effective use in the real world.Los modelos de Aprendizaje Automático (AA) se han aplicado para resolver problemas en diversos campos, lo que implica necesariamente una adecuada evaluación de los modelos para garantizar su rendimiento. Una vez implementados, los modelos de AA están sujetos a problemas de rendimiento, como los relacionados con los cambios en los datos (drift). Este tipo de problema ha motivado esfuerzos en el análisis y mantenimiento de modelos, así como en el aprendizaje continuo, que busca la capacidad de aprender de forma continua a partir de un flujo continuo de datos. Por lo tanto, es importante entender y desarrollar metodologías que puedan ser utilizadas para evaluar modelos de AA, lo que permite su uso en entornos del mundo real. Entre las áreas actuales de aplicación del AA, una que destaca en particular es el Aprendizaje Automático para la Salud, especialmente en conjunto con el Software de Soporte de Decisiones para Aplicaciones Médicas, lo que presenta desafíos específicos para la evaluación y monitoreo de modelos, especialmente dado que una predicción o clasificación incorrecta puede conducir a situaciones que ponen en peligro la vida. Este artículo presenta una revisión sistemática de la literatura, que tiene como objetivo identificar técnicas de vanguardia para evaluar y mantener modelos de AA para la salud en un uso efectivo en el mundo real.Os modelos de Aprendizado de Máquina (AM) têm sido aplicados para resolver problemas em diversos contextos, o que necessariamente envolve a avaliação adequada dos modelos para garantir seu desempenho. Uma vez implantados, os modelos de AM estão sujeitos a problemas de desempenho, como aqueles relacionados a mudanças nos dados (drift). Esse tipo de problema tem motivado esforços na análise e manutenção de modelos, bem como no aprendizado contínuo, que busca a capacidade de aprender continuamente a partir de um fluxo (contínuo) de dados. Portanto, é importante entender e desenvolver metodologias que possam ser utilizadas para avaliar modelos de AM, tornando seu uso em ambientes do mundo real viável. Entre as áreas atuais de aplicação de AM, uma que se destaca, em particular, é o Aprendizado de Máquina para a área da saúde, especialmente em conjunto com Software para Suporte à Decisão em Aplicações Médicas, apresentando desafios específicos para a avaliação e monitoramento de modelos, especialmente considerando que previsões ou classificações incorretas podem levar a situações que ameaçam a vida. Este artigo apresenta uma revisão sistemática da literatura cujo objetivo é identificar técnicas atuais para avaliar e manter modelos de AM aplicados a área da saúde em uso efetivo no mundo real.Research, Society and Development2023-06-14info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/4204210.33448/rsd-v12i6.42042Research, Society and Development; Vol. 12 No. 6; e5412642042Research, Society and Development; Vol. 12 Núm. 6; e5412642042Research, Society and Development; v. 12 n. 6; e54126420422525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIenghttps://rsdjournal.org/index.php/rsd/article/view/42042/34097Copyright (c) 2023 Cezar Miranda Paula de Souza; Cephas Alves da Silveira Barreto; Lhayana Vieira de Macedo; Bruna Alice Oliveira de Brito; Victor Vieira Targino; Emanuel Costa Betcel; Fernando Gomes de Almeida; Arthur Andrade Galvíncio Rodrigues; Ramon Santos Malaquias; Itamir de Morais Barroca Filhohttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessSouza, Cezar Miranda Paula de Barreto, Cephas Alves da Silveira Macedo, Lhayana Vieira de Brito, Bruna Alice Oliveira de Targino, Victor Vieira Betcel, Emanuel Costa Almeida, Fernando Gomes de Rodrigues, Arthur Andrade Galvíncio Malaquias, Ramon Santos Barroca Filho, Itamir de Morais 2023-07-06T11:16:27Zoai:ojs.pkp.sfu.ca:article/42042Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2023-07-06T11:16:27Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false |
dc.title.none.fl_str_mv |
A systematic literature review on Machine Learning Model evaluation on healthcare applications Una revisión sistemática de la literatura sobre la evaluación de Modelos de Aprendizaje Automático en aplicaciones de salud Uma revisão sistemática da literatura sobre avaliação de Modelos de Aprendizado de Máquina em aplicações de saúde |
title |
A systematic literature review on Machine Learning Model evaluation on healthcare applications |
spellingShingle |
A systematic literature review on Machine Learning Model evaluation on healthcare applications Souza, Cezar Miranda Paula de ML model validation ML for Healthcare ML model monitoring. Validación de modelos de AA AA para el sector de la salud Monitoreo de modelos de AA. Validação de modelos de AM AM para a área da saúde Monitoramento de modelos de AM. |
title_short |
A systematic literature review on Machine Learning Model evaluation on healthcare applications |
title_full |
A systematic literature review on Machine Learning Model evaluation on healthcare applications |
title_fullStr |
A systematic literature review on Machine Learning Model evaluation on healthcare applications |
title_full_unstemmed |
A systematic literature review on Machine Learning Model evaluation on healthcare applications |
title_sort |
A systematic literature review on Machine Learning Model evaluation on healthcare applications |
author |
Souza, Cezar Miranda Paula de |
author_facet |
Souza, Cezar Miranda Paula de Barreto, Cephas Alves da Silveira Macedo, Lhayana Vieira de Brito, Bruna Alice Oliveira de Targino, Victor Vieira Betcel, Emanuel Costa Almeida, Fernando Gomes de Rodrigues, Arthur Andrade Galvíncio Malaquias, Ramon Santos Barroca Filho, Itamir de Morais |
author_role |
author |
author2 |
Barreto, Cephas Alves da Silveira Macedo, Lhayana Vieira de Brito, Bruna Alice Oliveira de Targino, Victor Vieira Betcel, Emanuel Costa Almeida, Fernando Gomes de Rodrigues, Arthur Andrade Galvíncio Malaquias, Ramon Santos Barroca Filho, Itamir de Morais |
author2_role |
author author author author author author author author author |
dc.contributor.author.fl_str_mv |
Souza, Cezar Miranda Paula de Barreto, Cephas Alves da Silveira Macedo, Lhayana Vieira de Brito, Bruna Alice Oliveira de Targino, Victor Vieira Betcel, Emanuel Costa Almeida, Fernando Gomes de Rodrigues, Arthur Andrade Galvíncio Malaquias, Ramon Santos Barroca Filho, Itamir de Morais |
dc.subject.por.fl_str_mv |
ML model validation ML for Healthcare ML model monitoring. Validación de modelos de AA AA para el sector de la salud Monitoreo de modelos de AA. Validação de modelos de AM AM para a área da saúde Monitoramento de modelos de AM. |
topic |
ML model validation ML for Healthcare ML model monitoring. Validación de modelos de AA AA para el sector de la salud Monitoreo de modelos de AA. Validação de modelos de AM AM para a área da saúde Monitoramento de modelos de AM. |
description |
Machine Learning (ML) models have been applied to solve problems in various fields, which necessarily involves proper evaluation of models to ensure performance. Once deployed, ML models are subject to performance issues, such as those related to changes in data (drift). This type of issue has prompted efforts in model analysis and maintenance, as well as in continual learning, which seeks the ability to continuously learn from a (continuous) stream of data. Therefore, it's important to understand and develop methodologies that can be used to evaluate ML models, making their use in real-world environments feasible. Amongst current areas of application for ML, one that stands out, in particular, is Machine Learning for Healthcare, especially in conjunction with Software for Decision Support of Medical Applications, which presents specific challenges for the evaluation and monitoring of models, particularly given that incorrect prediction or classification can lead to life-threatening situations. This paper presents a systematic literature review that aims at identifying state-of-the-art techniques for evaluating and maintaining ML models for healthcare in effective use in the real world. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-06-14 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/42042 10.33448/rsd-v12i6.42042 |
url |
https://rsdjournal.org/index.php/rsd/article/view/42042 |
identifier_str_mv |
10.33448/rsd-v12i6.42042 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/42042/34097 |
dc.rights.driver.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Research, Society and Development |
publisher.none.fl_str_mv |
Research, Society and Development |
dc.source.none.fl_str_mv |
Research, Society and Development; Vol. 12 No. 6; e5412642042 Research, Society and Development; Vol. 12 Núm. 6; e5412642042 Research, Society and Development; v. 12 n. 6; e5412642042 2525-3409 reponame:Research, Society and Development instname:Universidade Federal de Itajubá (UNIFEI) instacron:UNIFEI |
instname_str |
Universidade Federal de Itajubá (UNIFEI) |
instacron_str |
UNIFEI |
institution |
UNIFEI |
reponame_str |
Research, Society and Development |
collection |
Research, Society and Development |
repository.name.fl_str_mv |
Research, Society and Development - Universidade Federal de Itajubá (UNIFEI) |
repository.mail.fl_str_mv |
rsd.articles@gmail.com |
_version_ |
1797052625726734336 |