A systematic literature review on Machine Learning Model evaluation on healthcare applications

Detalhes bibliográficos
Autor(a) principal: Souza, Cezar Miranda Paula de
Data de Publicação: 2023
Outros Autores: Barreto, Cephas Alves da Silveira, Macedo, Lhayana Vieira de, Brito, Bruna Alice Oliveira de, Targino, Victor Vieira, Betcel, Emanuel Costa, Almeida, Fernando Gomes de, Rodrigues, Arthur Andrade Galvíncio, Malaquias, Ramon Santos, Barroca Filho, Itamir de Morais
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Research, Society and Development
Texto Completo: https://rsdjournal.org/index.php/rsd/article/view/42042
Resumo: Machine Learning (ML) models have been applied to solve problems in various fields, which necessarily involves proper evaluation of models to ensure performance. Once deployed, ML models are subject to performance issues, such as those related to changes in data (drift). This type of issue has prompted efforts in model analysis and maintenance, as well as in continual learning, which seeks the ability to continuously learn from a (continuous) stream of data. Therefore, it's important to understand and develop methodologies that can be used to evaluate ML models, making their use in real-world environments feasible. Amongst current areas of application for ML, one that stands out, in particular, is Machine Learning for Healthcare, especially in conjunction with Software for Decision Support of Medical Applications, which presents specific challenges for the evaluation and monitoring of models, particularly given that incorrect prediction or classification can lead to life-threatening situations. This paper presents a systematic literature review that aims at identifying state-of-the-art techniques for evaluating and maintaining ML models for healthcare in effective use in the real world.
id UNIFEI_0a0c5d02cd1bb59c413c1d2be7e62624
oai_identifier_str oai:ojs.pkp.sfu.ca:article/42042
network_acronym_str UNIFEI
network_name_str Research, Society and Development
repository_id_str
spelling A systematic literature review on Machine Learning Model evaluation on healthcare applicationsUna revisión sistemática de la literatura sobre la evaluación de Modelos de Aprendizaje Automático en aplicaciones de saludUma revisão sistemática da literatura sobre avaliação de Modelos de Aprendizado de Máquina em aplicações de saúdeML model validationML for HealthcareML model monitoring.Validación de modelos de AAAA para el sector de la saludMonitoreo de modelos de AA.Validação de modelos de AMAM para a área da saúdeMonitoramento de modelos de AM.Machine Learning (ML) models have been applied to solve problems in various fields, which necessarily involves proper evaluation of models to ensure performance. Once deployed, ML models are subject to performance issues, such as those related to changes in data (drift). This type of issue has prompted efforts in model analysis and maintenance, as well as in continual learning, which seeks the ability to continuously learn from a (continuous) stream of data. Therefore, it's important to understand and develop methodologies that can be used to evaluate ML models, making their use in real-world environments feasible. Amongst current areas of application for ML, one that stands out, in particular, is Machine Learning for Healthcare, especially in conjunction with Software for Decision Support of Medical Applications, which presents specific challenges for the evaluation and monitoring of models, particularly given that incorrect prediction or classification can lead to life-threatening situations. This paper presents a systematic literature review that aims at identifying state-of-the-art techniques for evaluating and maintaining ML models for healthcare in effective use in the real world.Los modelos de Aprendizaje Automático (AA) se han aplicado para resolver problemas en diversos campos, lo que implica necesariamente una adecuada evaluación de los modelos para garantizar su rendimiento. Una vez implementados, los modelos de AA están sujetos a problemas de rendimiento, como los relacionados con los cambios en los datos (drift). Este tipo de problema ha motivado esfuerzos en el análisis y mantenimiento de modelos, así como en el aprendizaje continuo, que busca la capacidad de aprender de forma continua a partir de un flujo continuo de datos. Por lo tanto, es importante entender y desarrollar metodologías que puedan ser utilizadas para evaluar modelos de AA, lo que permite su uso en entornos del mundo real. Entre las áreas actuales de aplicación del AA, una que destaca en particular es el Aprendizaje Automático para la Salud, especialmente en conjunto con el Software de Soporte de Decisiones para Aplicaciones Médicas, lo que presenta desafíos específicos para la evaluación y monitoreo de modelos, especialmente dado que una predicción o clasificación incorrecta puede conducir a situaciones que ponen en peligro la vida. Este artículo presenta una revisión sistemática de la literatura, que tiene como objetivo identificar técnicas de vanguardia para evaluar y mantener modelos de AA para la salud en un uso efectivo en el mundo real.Os modelos de Aprendizado de Máquina (AM) têm sido aplicados para resolver problemas em diversos contextos, o que necessariamente envolve a avaliação adequada dos modelos para garantir seu desempenho. Uma vez implantados, os modelos de AM estão sujeitos a problemas de desempenho, como aqueles relacionados a mudanças nos dados (drift). Esse tipo de problema tem motivado esforços na análise e manutenção de modelos, bem como no aprendizado contínuo, que busca a capacidade de aprender continuamente a partir de um fluxo (contínuo) de dados. Portanto, é importante entender e desenvolver metodologias que possam ser utilizadas para avaliar modelos de AM, tornando seu uso em ambientes do mundo real viável. Entre as áreas atuais de aplicação de AM, uma que se destaca, em particular, é o Aprendizado de Máquina para a área da saúde, especialmente em conjunto com Software para Suporte à Decisão em Aplicações Médicas, apresentando desafios específicos para a avaliação e monitoramento de modelos, especialmente considerando que previsões ou classificações incorretas podem levar a situações que ameaçam a vida. Este artigo apresenta uma revisão sistemática da literatura cujo objetivo é identificar técnicas atuais para avaliar e manter modelos de AM aplicados a área da saúde em uso efetivo no mundo real.Research, Society and Development2023-06-14info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/4204210.33448/rsd-v12i6.42042Research, Society and Development; Vol. 12 No. 6; e5412642042Research, Society and Development; Vol. 12 Núm. 6; e5412642042Research, Society and Development; v. 12 n. 6; e54126420422525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIenghttps://rsdjournal.org/index.php/rsd/article/view/42042/34097Copyright (c) 2023 Cezar Miranda Paula de Souza; Cephas Alves da Silveira Barreto; Lhayana Vieira de Macedo; Bruna Alice Oliveira de Brito; Victor Vieira Targino; Emanuel Costa Betcel; Fernando Gomes de Almeida; Arthur Andrade Galvíncio Rodrigues; Ramon Santos Malaquias; Itamir de Morais Barroca Filhohttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessSouza, Cezar Miranda Paula de Barreto, Cephas Alves da Silveira Macedo, Lhayana Vieira de Brito, Bruna Alice Oliveira de Targino, Victor Vieira Betcel, Emanuel Costa Almeida, Fernando Gomes de Rodrigues, Arthur Andrade Galvíncio Malaquias, Ramon Santos Barroca Filho, Itamir de Morais 2023-07-06T11:16:27Zoai:ojs.pkp.sfu.ca:article/42042Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2023-07-06T11:16:27Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false
dc.title.none.fl_str_mv A systematic literature review on Machine Learning Model evaluation on healthcare applications
Una revisión sistemática de la literatura sobre la evaluación de Modelos de Aprendizaje Automático en aplicaciones de salud
Uma revisão sistemática da literatura sobre avaliação de Modelos de Aprendizado de Máquina em aplicações de saúde
title A systematic literature review on Machine Learning Model evaluation on healthcare applications
spellingShingle A systematic literature review on Machine Learning Model evaluation on healthcare applications
Souza, Cezar Miranda Paula de
ML model validation
ML for Healthcare
ML model monitoring.
Validación de modelos de AA
AA para el sector de la salud
Monitoreo de modelos de AA.
Validação de modelos de AM
AM para a área da saúde
Monitoramento de modelos de AM.
title_short A systematic literature review on Machine Learning Model evaluation on healthcare applications
title_full A systematic literature review on Machine Learning Model evaluation on healthcare applications
title_fullStr A systematic literature review on Machine Learning Model evaluation on healthcare applications
title_full_unstemmed A systematic literature review on Machine Learning Model evaluation on healthcare applications
title_sort A systematic literature review on Machine Learning Model evaluation on healthcare applications
author Souza, Cezar Miranda Paula de
author_facet Souza, Cezar Miranda Paula de
Barreto, Cephas Alves da Silveira
Macedo, Lhayana Vieira de
Brito, Bruna Alice Oliveira de
Targino, Victor Vieira
Betcel, Emanuel Costa
Almeida, Fernando Gomes de
Rodrigues, Arthur Andrade Galvíncio
Malaquias, Ramon Santos
Barroca Filho, Itamir de Morais
author_role author
author2 Barreto, Cephas Alves da Silveira
Macedo, Lhayana Vieira de
Brito, Bruna Alice Oliveira de
Targino, Victor Vieira
Betcel, Emanuel Costa
Almeida, Fernando Gomes de
Rodrigues, Arthur Andrade Galvíncio
Malaquias, Ramon Santos
Barroca Filho, Itamir de Morais
author2_role author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Souza, Cezar Miranda Paula de
Barreto, Cephas Alves da Silveira
Macedo, Lhayana Vieira de
Brito, Bruna Alice Oliveira de
Targino, Victor Vieira
Betcel, Emanuel Costa
Almeida, Fernando Gomes de
Rodrigues, Arthur Andrade Galvíncio
Malaquias, Ramon Santos
Barroca Filho, Itamir de Morais
dc.subject.por.fl_str_mv ML model validation
ML for Healthcare
ML model monitoring.
Validación de modelos de AA
AA para el sector de la salud
Monitoreo de modelos de AA.
Validação de modelos de AM
AM para a área da saúde
Monitoramento de modelos de AM.
topic ML model validation
ML for Healthcare
ML model monitoring.
Validación de modelos de AA
AA para el sector de la salud
Monitoreo de modelos de AA.
Validação de modelos de AM
AM para a área da saúde
Monitoramento de modelos de AM.
description Machine Learning (ML) models have been applied to solve problems in various fields, which necessarily involves proper evaluation of models to ensure performance. Once deployed, ML models are subject to performance issues, such as those related to changes in data (drift). This type of issue has prompted efforts in model analysis and maintenance, as well as in continual learning, which seeks the ability to continuously learn from a (continuous) stream of data. Therefore, it's important to understand and develop methodologies that can be used to evaluate ML models, making their use in real-world environments feasible. Amongst current areas of application for ML, one that stands out, in particular, is Machine Learning for Healthcare, especially in conjunction with Software for Decision Support of Medical Applications, which presents specific challenges for the evaluation and monitoring of models, particularly given that incorrect prediction or classification can lead to life-threatening situations. This paper presents a systematic literature review that aims at identifying state-of-the-art techniques for evaluating and maintaining ML models for healthcare in effective use in the real world.
publishDate 2023
dc.date.none.fl_str_mv 2023-06-14
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/42042
10.33448/rsd-v12i6.42042
url https://rsdjournal.org/index.php/rsd/article/view/42042
identifier_str_mv 10.33448/rsd-v12i6.42042
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/42042/34097
dc.rights.driver.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Research, Society and Development
publisher.none.fl_str_mv Research, Society and Development
dc.source.none.fl_str_mv Research, Society and Development; Vol. 12 No. 6; e5412642042
Research, Society and Development; Vol. 12 Núm. 6; e5412642042
Research, Society and Development; v. 12 n. 6; e5412642042
2525-3409
reponame:Research, Society and Development
instname:Universidade Federal de Itajubá (UNIFEI)
instacron:UNIFEI
instname_str Universidade Federal de Itajubá (UNIFEI)
instacron_str UNIFEI
institution UNIFEI
reponame_str Research, Society and Development
collection Research, Society and Development
repository.name.fl_str_mv Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)
repository.mail.fl_str_mv rsd.articles@gmail.com
_version_ 1797052625726734336