Classification of breast injuries in categories 4 and 5 of the BI-RADS® standard using neural networks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Research, Society and Development |
Texto Completo: | https://rsdjournal.org/index.php/rsd/article/view/31305 |
Resumo: | Breast cancer is the disease with the highest incidence among women worldwide, with an estimate for Brazil in the 2020-2021 biennium about 66,280 new cases of breast cancer, which corresponds to a rate of 29.7% of cases in the female population and about 15,000 deaths from the disease. Mammography is one of the most used tests for early detection of this type of neoplasm. However, errors occur in the reading and interpretation of reports, even a well-trained professional has a success rate between 65% and 75% with an amount of false negative varying between 15% to 30% and a false positive of 7% to 10%, resulting in an unnecessary amount of biopsy, 65% to 90% of tissue biopsies with suspected cancer are benign, causing emotional and physical repercussions for patients. Computer systems can be developed to aid in medical diagnosis. This article applied neural network techniques to develop a computational tool capable of classifying injuries from categories 4 and 5 of the BI-RADS® standard. The results acquired by the software, observed that the best classifier with regard to the accuracy rate was Deep Learning, reaching a percentage of 82.60%, the Support Vectors Machine - SVM had a percentage of 73.97%. This demonstrates that the neural network techniques used in the software design show an efficiency in the lesion classification task. |
id |
UNIFEI_0d5b4bdfaf6eedb5ed2ce9b5446e8a1a |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/31305 |
network_acronym_str |
UNIFEI |
network_name_str |
Research, Society and Development |
repository_id_str |
|
spelling |
Classification of breast injuries in categories 4 and 5 of the BI-RADS® standard using neural networks Clasificación de las lesiones de la mama en las categorías 4 y 5 del estándar BI-RADS® mediante redes neuronales Classificação de lesões mamárias das categorias 4 e 5 do padrão BI-RADS® utilizando redes neuraisBreast cancerBI-RADS® ClassificationImage processingNeural networks.Cáncer de mamaClasificación BI-RADS®Procesamiento de imágenesRedes neuronales.Câncer de mamaClassificação BI-RADS®Processamento de imagemRedes neurais.Breast cancer is the disease with the highest incidence among women worldwide, with an estimate for Brazil in the 2020-2021 biennium about 66,280 new cases of breast cancer, which corresponds to a rate of 29.7% of cases in the female population and about 15,000 deaths from the disease. Mammography is one of the most used tests for early detection of this type of neoplasm. However, errors occur in the reading and interpretation of reports, even a well-trained professional has a success rate between 65% and 75% with an amount of false negative varying between 15% to 30% and a false positive of 7% to 10%, resulting in an unnecessary amount of biopsy, 65% to 90% of tissue biopsies with suspected cancer are benign, causing emotional and physical repercussions for patients. Computer systems can be developed to aid in medical diagnosis. This article applied neural network techniques to develop a computational tool capable of classifying injuries from categories 4 and 5 of the BI-RADS® standard. The results acquired by the software, observed that the best classifier with regard to the accuracy rate was Deep Learning, reaching a percentage of 82.60%, the Support Vectors Machine - SVM had a percentage of 73.97%. This demonstrates that the neural network techniques used in the software design show an efficiency in the lesion classification task.El cáncer de mama es la enfermedad con mayor incidencia entre las mujeres en todo el mundo, con una estimación para Brasil en el bienio 2020-2021 de unos 66.280 nuevos casos de cáncer de mama, lo que corresponde a una tasa del 29,7% de los casos en la población femenina y cerca de 15.000 muertes de la enfermedad La mamografía es una de las pruebas más utilizadas para la detección precoz de este tipo de neoplasias. Sin embargo, se producen errores en la lectura e interpretación de los informes, incluso un profesional bien capacitado tiene una tasa de éxito entre el 65% y el 75% con una cantidad de falsos negativos que varía entre el 15 % y el 30 % y un falso positivo del 7 % al 10 %, lo que da como resultado una cantidad innecesaria de biopsias, del 65 % al 90 % de las biopsias de tejido con sospecha de cáncer son benignas, lo que causa problemas emocionales y físicos. repercusiones para los pacientes. Se pueden desarrollar sistemas informáticos para ayudar en el diagnóstico médico. Este artículo aplicó técnicas de redes neuronales para desarrollar una herramienta computacional capaz de clasificar lesiones de las categorías 4 y 5 del estándar BI-RADS®. Los resultados adquiridos por el software, observaron que el mejor clasificador en cuanto a la tasa de precisión fue Deep Learning, alcanzando un porcentaje de 82,60%, la Máquina de Vectores de Soporte - SVM tuvo un porcentaje de 73,97%. Esto demuestra que las técnicas de redes neuronales utilizadas en el diseño del software muestran una eficiencia en la tarea de clasificación de lesiones.O câncer de mama é a doença com mais incidência entre as mulheres em todo mundo, estimativa para Brasil no biênio de 2020-2021 cerca de 66.280 novos casos de câncer de mama que corresponde a uma taxa 29,7% dos casos na população feminina e cerca de 15.000 mortes pela doença. A mamografia é um dos exames mais utilizado para detecção precoce desde tipo de neoplasia. No entanto, erros acontecem na leitura e interpretação dos laudos, mesmo um profissional bem treinado apresenta uma taxa de acertos entre 65% a 75% com uma quantidade de falso negativo variando entre 15% a 30% e um falso positivo de 7% a 10%, resultando em quantidade desnecessária de biópsia, de 65% a 90% das biópsias de tecido com suspeita de câncer apresentam-se benigna, causando repercussão emocional e física para as pacientes. Sistemas computacionais podem ser desenvolvidos para auxiliar no diagnóstico médico. Este artigo aplicou as técnicas de redes neurais para desenvolver uma ferramenta computacional capaz de classificar lesões das categorias 4 e 5 do padrão BI-RADS®. Os resultados adquiridos pelo software, observaram que o melhor classificador no que diz respeito à taxa de acerto acurácia, foi o Deep Learning, atingindo um percentual de 82,60%, o Support Vectors Machine - SVM teve um percentual de 73,97%. Isto demostra que as técnicas de redes neurais utilizadas no projeto do software mostram uma eficácia na tarefa de classificação das lesões.Research, Society and Development2022-07-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/3130510.33448/rsd-v11i9.31305Research, Society and Development; Vol. 11 No. 9; e26611931305Research, Society and Development; Vol. 11 Núm. 9; e26611931305Research, Society and Development; v. 11 n. 9; e266119313052525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIporhttps://rsdjournal.org/index.php/rsd/article/view/31305/27117Copyright (c) 2022 Elmo de Jesus Nery Júnior; Otílio Paulo da Silva Neto; Francisco Adelton Alves Ribeiro; Francisco das Chagas Alves Lima; Larysse Maira Cardoso Campos Verdes; Danylo Rafhael Costa Silva; Maria da Conceição Barros Oliveira; Pedro Henrique Bandeira Diniz; Anselmo Cardoso de Paiva; Aristófanes Corrêa Silvahttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessNery Júnior, Elmo de Jesus Silva Neto, Otílio Paulo da Ribeiro, Francisco Adelton Alves Lima, Francisco das Chagas Alves Verdes, Larysse Maira Cardoso Campos Silva, Danylo Rafhael Costa Oliveira, Maria da Conceição Barros Diniz, Pedro Henrique Bandeira Paiva, Anselmo Cardoso de Silva, Aristófanes Corrêa 2022-07-21T12:36:16Zoai:ojs.pkp.sfu.ca:article/31305Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:47:41.841732Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false |
dc.title.none.fl_str_mv |
Classification of breast injuries in categories 4 and 5 of the BI-RADS® standard using neural networks Clasificación de las lesiones de la mama en las categorías 4 y 5 del estándar BI-RADS® mediante redes neuronales Classificação de lesões mamárias das categorias 4 e 5 do padrão BI-RADS® utilizando redes neurais |
title |
Classification of breast injuries in categories 4 and 5 of the BI-RADS® standard using neural networks |
spellingShingle |
Classification of breast injuries in categories 4 and 5 of the BI-RADS® standard using neural networks Nery Júnior, Elmo de Jesus Breast cancer BI-RADS® Classification Image processing Neural networks. Cáncer de mama Clasificación BI-RADS® Procesamiento de imágenes Redes neuronales. Câncer de mama Classificação BI-RADS® Processamento de imagem Redes neurais. |
title_short |
Classification of breast injuries in categories 4 and 5 of the BI-RADS® standard using neural networks |
title_full |
Classification of breast injuries in categories 4 and 5 of the BI-RADS® standard using neural networks |
title_fullStr |
Classification of breast injuries in categories 4 and 5 of the BI-RADS® standard using neural networks |
title_full_unstemmed |
Classification of breast injuries in categories 4 and 5 of the BI-RADS® standard using neural networks |
title_sort |
Classification of breast injuries in categories 4 and 5 of the BI-RADS® standard using neural networks |
author |
Nery Júnior, Elmo de Jesus |
author_facet |
Nery Júnior, Elmo de Jesus Silva Neto, Otílio Paulo da Ribeiro, Francisco Adelton Alves Lima, Francisco das Chagas Alves Verdes, Larysse Maira Cardoso Campos Silva, Danylo Rafhael Costa Oliveira, Maria da Conceição Barros Diniz, Pedro Henrique Bandeira Paiva, Anselmo Cardoso de Silva, Aristófanes Corrêa |
author_role |
author |
author2 |
Silva Neto, Otílio Paulo da Ribeiro, Francisco Adelton Alves Lima, Francisco das Chagas Alves Verdes, Larysse Maira Cardoso Campos Silva, Danylo Rafhael Costa Oliveira, Maria da Conceição Barros Diniz, Pedro Henrique Bandeira Paiva, Anselmo Cardoso de Silva, Aristófanes Corrêa |
author2_role |
author author author author author author author author author |
dc.contributor.author.fl_str_mv |
Nery Júnior, Elmo de Jesus Silva Neto, Otílio Paulo da Ribeiro, Francisco Adelton Alves Lima, Francisco das Chagas Alves Verdes, Larysse Maira Cardoso Campos Silva, Danylo Rafhael Costa Oliveira, Maria da Conceição Barros Diniz, Pedro Henrique Bandeira Paiva, Anselmo Cardoso de Silva, Aristófanes Corrêa |
dc.subject.por.fl_str_mv |
Breast cancer BI-RADS® Classification Image processing Neural networks. Cáncer de mama Clasificación BI-RADS® Procesamiento de imágenes Redes neuronales. Câncer de mama Classificação BI-RADS® Processamento de imagem Redes neurais. |
topic |
Breast cancer BI-RADS® Classification Image processing Neural networks. Cáncer de mama Clasificación BI-RADS® Procesamiento de imágenes Redes neuronales. Câncer de mama Classificação BI-RADS® Processamento de imagem Redes neurais. |
description |
Breast cancer is the disease with the highest incidence among women worldwide, with an estimate for Brazil in the 2020-2021 biennium about 66,280 new cases of breast cancer, which corresponds to a rate of 29.7% of cases in the female population and about 15,000 deaths from the disease. Mammography is one of the most used tests for early detection of this type of neoplasm. However, errors occur in the reading and interpretation of reports, even a well-trained professional has a success rate between 65% and 75% with an amount of false negative varying between 15% to 30% and a false positive of 7% to 10%, resulting in an unnecessary amount of biopsy, 65% to 90% of tissue biopsies with suspected cancer are benign, causing emotional and physical repercussions for patients. Computer systems can be developed to aid in medical diagnosis. This article applied neural network techniques to develop a computational tool capable of classifying injuries from categories 4 and 5 of the BI-RADS® standard. The results acquired by the software, observed that the best classifier with regard to the accuracy rate was Deep Learning, reaching a percentage of 82.60%, the Support Vectors Machine - SVM had a percentage of 73.97%. This demonstrates that the neural network techniques used in the software design show an efficiency in the lesion classification task. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-07-09 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/31305 10.33448/rsd-v11i9.31305 |
url |
https://rsdjournal.org/index.php/rsd/article/view/31305 |
identifier_str_mv |
10.33448/rsd-v11i9.31305 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/31305/27117 |
dc.rights.driver.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Research, Society and Development |
publisher.none.fl_str_mv |
Research, Society and Development |
dc.source.none.fl_str_mv |
Research, Society and Development; Vol. 11 No. 9; e26611931305 Research, Society and Development; Vol. 11 Núm. 9; e26611931305 Research, Society and Development; v. 11 n. 9; e26611931305 2525-3409 reponame:Research, Society and Development instname:Universidade Federal de Itajubá (UNIFEI) instacron:UNIFEI |
instname_str |
Universidade Federal de Itajubá (UNIFEI) |
instacron_str |
UNIFEI |
institution |
UNIFEI |
reponame_str |
Research, Society and Development |
collection |
Research, Society and Development |
repository.name.fl_str_mv |
Research, Society and Development - Universidade Federal de Itajubá (UNIFEI) |
repository.mail.fl_str_mv |
rsd.articles@gmail.com |
_version_ |
1797052715719720960 |