Classification of breast injuries in categories 4 and 5 of the BI-RADS® standard using neural networks

Detalhes bibliográficos
Autor(a) principal: Nery Júnior, Elmo de Jesus
Data de Publicação: 2022
Outros Autores: Silva Neto, Otílio Paulo da, Ribeiro, Francisco Adelton Alves, Lima, Francisco das Chagas Alves, Verdes, Larysse Maira Cardoso Campos, Silva, Danylo Rafhael Costa, Oliveira, Maria da Conceição Barros, Diniz, Pedro Henrique Bandeira, Paiva, Anselmo Cardoso de, Silva, Aristófanes Corrêa
Tipo de documento: Artigo
Idioma: por
Título da fonte: Research, Society and Development
Texto Completo: https://rsdjournal.org/index.php/rsd/article/view/31305
Resumo: Breast cancer is the disease with the highest incidence among women worldwide, with an estimate for Brazil in the 2020-2021 biennium about 66,280 new cases of breast cancer, which corresponds to a rate of 29.7% of cases in the female population and about 15,000 deaths from the disease. Mammography is one of the most used tests for early detection of this type of neoplasm. However, errors occur in the reading and interpretation of reports, even a well-trained professional has a success rate between 65% and 75% with an amount of false negative varying between 15% to 30% and a false positive of 7% to 10%, resulting in an unnecessary amount of biopsy, 65% to 90% of tissue biopsies with suspected cancer are benign, causing emotional and physical repercussions for patients. Computer systems can be developed to aid in medical diagnosis. This article applied neural network techniques to develop a computational tool capable of classifying injuries from categories 4 and 5 of the BI-RADS® standard. The results acquired by the software, observed that the best classifier with regard to the accuracy rate was Deep Learning, reaching a percentage of 82.60%, the Support Vectors Machine - SVM had a percentage of 73.97%. This demonstrates that the neural network techniques used in the software design show an efficiency in the lesion classification task.
id UNIFEI_0d5b4bdfaf6eedb5ed2ce9b5446e8a1a
oai_identifier_str oai:ojs.pkp.sfu.ca:article/31305
network_acronym_str UNIFEI
network_name_str Research, Society and Development
repository_id_str
spelling Classification of breast injuries in categories 4 and 5 of the BI-RADS® standard using neural networks Clasificación de las lesiones de la mama en las categorías 4 y 5 del estándar BI-RADS® mediante redes neuronales Classificação de lesões mamárias das categorias 4 e 5 do padrão BI-RADS® utilizando redes neuraisBreast cancerBI-RADS® ClassificationImage processingNeural networks.Cáncer de mamaClasificación BI-RADS®Procesamiento de imágenesRedes neuronales.Câncer de mamaClassificação BI-RADS®Processamento de imagemRedes neurais.Breast cancer is the disease with the highest incidence among women worldwide, with an estimate for Brazil in the 2020-2021 biennium about 66,280 new cases of breast cancer, which corresponds to a rate of 29.7% of cases in the female population and about 15,000 deaths from the disease. Mammography is one of the most used tests for early detection of this type of neoplasm. However, errors occur in the reading and interpretation of reports, even a well-trained professional has a success rate between 65% and 75% with an amount of false negative varying between 15% to 30% and a false positive of 7% to 10%, resulting in an unnecessary amount of biopsy, 65% to 90% of tissue biopsies with suspected cancer are benign, causing emotional and physical repercussions for patients. Computer systems can be developed to aid in medical diagnosis. This article applied neural network techniques to develop a computational tool capable of classifying injuries from categories 4 and 5 of the BI-RADS® standard. The results acquired by the software, observed that the best classifier with regard to the accuracy rate was Deep Learning, reaching a percentage of 82.60%, the Support Vectors Machine - SVM had a percentage of 73.97%. This demonstrates that the neural network techniques used in the software design show an efficiency in the lesion classification task.El cáncer de mama es la enfermedad con mayor incidencia entre las mujeres en todo el mundo, con una estimación para Brasil en el bienio 2020-2021 de unos 66.280 nuevos casos de cáncer de mama, lo que corresponde a una tasa del 29,7% de los casos en la población femenina y cerca de 15.000 muertes de la enfermedad La mamografía es una de las pruebas más utilizadas para la detección precoz de este tipo de neoplasias. Sin embargo, se producen errores en la lectura e interpretación de los informes, incluso un profesional bien capacitado tiene una tasa de éxito entre el 65% y el 75% con una cantidad de falsos negativos que varía entre el 15 % y el 30 % y un falso positivo del 7 % al 10 %, lo que da como resultado una cantidad innecesaria de biopsias, del 65 % al 90 % de las biopsias de tejido con sospecha de cáncer son benignas, lo que causa problemas emocionales y físicos. repercusiones para los pacientes. Se pueden desarrollar sistemas informáticos para ayudar en el diagnóstico médico. Este artículo aplicó técnicas de redes neuronales para desarrollar una herramienta computacional capaz de clasificar lesiones de las categorías 4 y 5 del estándar BI-RADS®. Los resultados adquiridos por el software, observaron que el mejor clasificador en cuanto a la tasa de precisión fue Deep Learning, alcanzando un porcentaje de 82,60%, la Máquina de Vectores de Soporte - SVM tuvo un porcentaje de 73,97%. Esto demuestra que las técnicas de redes neuronales utilizadas en el diseño del software muestran una eficiencia en la tarea de clasificación de lesiones.O câncer de mama é a doença com mais incidência entre as mulheres em todo mundo, estimativa para Brasil no biênio de 2020-2021 cerca de 66.280 novos casos de câncer de mama que corresponde a uma taxa 29,7% dos casos na população feminina e cerca de 15.000 mortes pela doença. A mamografia é um dos exames mais utilizado para detecção precoce desde tipo de neoplasia. No entanto, erros acontecem na leitura e interpretação dos laudos, mesmo um profissional bem treinado apresenta uma taxa de acertos entre 65% a 75% com uma quantidade de falso negativo variando entre 15% a 30% e um falso positivo de 7% a 10%, resultando em quantidade desnecessária de biópsia, de 65% a 90% das biópsias de tecido com suspeita de câncer apresentam-se benigna, causando repercussão emocional e física para as pacientes.  Sistemas computacionais podem ser desenvolvidos para auxiliar no diagnóstico médico. Este artigo aplicou as técnicas de redes neurais para desenvolver uma ferramenta computacional capaz de classificar lesões das categorias 4 e 5 do padrão BI-RADS®. Os resultados adquiridos pelo software, observaram que o melhor classificador no que diz respeito à taxa de acerto acurácia, foi o Deep Learning, atingindo um percentual de 82,60%, o Support Vectors Machine - SVM teve um percentual de 73,97%. Isto demostra que as técnicas de redes neurais utilizadas no projeto do software mostram uma eficácia na tarefa de classificação das lesões.Research, Society and Development2022-07-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/3130510.33448/rsd-v11i9.31305Research, Society and Development; Vol. 11 No. 9; e26611931305Research, Society and Development; Vol. 11 Núm. 9; e26611931305Research, Society and Development; v. 11 n. 9; e266119313052525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIporhttps://rsdjournal.org/index.php/rsd/article/view/31305/27117Copyright (c) 2022 Elmo de Jesus Nery Júnior; Otílio Paulo da Silva Neto; Francisco Adelton Alves Ribeiro; Francisco das Chagas Alves Lima; Larysse Maira Cardoso Campos Verdes; Danylo Rafhael Costa Silva; Maria da Conceição Barros Oliveira; Pedro Henrique Bandeira Diniz; Anselmo Cardoso de Paiva; Aristófanes Corrêa Silvahttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessNery Júnior, Elmo de Jesus Silva Neto, Otílio Paulo da Ribeiro, Francisco Adelton Alves Lima, Francisco das Chagas Alves Verdes, Larysse Maira Cardoso Campos Silva, Danylo Rafhael Costa Oliveira, Maria da Conceição Barros Diniz, Pedro Henrique Bandeira Paiva, Anselmo Cardoso de Silva, Aristófanes Corrêa 2022-07-21T12:36:16Zoai:ojs.pkp.sfu.ca:article/31305Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:47:41.841732Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false
dc.title.none.fl_str_mv Classification of breast injuries in categories 4 and 5 of the BI-RADS® standard using neural networks
Clasificación de las lesiones de la mama en las categorías 4 y 5 del estándar BI-RADS® mediante redes neuronales
Classificação de lesões mamárias das categorias 4 e 5 do padrão BI-RADS® utilizando redes neurais
title Classification of breast injuries in categories 4 and 5 of the BI-RADS® standard using neural networks
spellingShingle Classification of breast injuries in categories 4 and 5 of the BI-RADS® standard using neural networks
Nery Júnior, Elmo de Jesus
Breast cancer
BI-RADS® Classification
Image processing
Neural networks.
Cáncer de mama
Clasificación BI-RADS®
Procesamiento de imágenes
Redes neuronales.
Câncer de mama
Classificação BI-RADS®
Processamento de imagem
Redes neurais.
title_short Classification of breast injuries in categories 4 and 5 of the BI-RADS® standard using neural networks
title_full Classification of breast injuries in categories 4 and 5 of the BI-RADS® standard using neural networks
title_fullStr Classification of breast injuries in categories 4 and 5 of the BI-RADS® standard using neural networks
title_full_unstemmed Classification of breast injuries in categories 4 and 5 of the BI-RADS® standard using neural networks
title_sort Classification of breast injuries in categories 4 and 5 of the BI-RADS® standard using neural networks
author Nery Júnior, Elmo de Jesus
author_facet Nery Júnior, Elmo de Jesus
Silva Neto, Otílio Paulo da
Ribeiro, Francisco Adelton Alves
Lima, Francisco das Chagas Alves
Verdes, Larysse Maira Cardoso Campos
Silva, Danylo Rafhael Costa
Oliveira, Maria da Conceição Barros
Diniz, Pedro Henrique Bandeira
Paiva, Anselmo Cardoso de
Silva, Aristófanes Corrêa
author_role author
author2 Silva Neto, Otílio Paulo da
Ribeiro, Francisco Adelton Alves
Lima, Francisco das Chagas Alves
Verdes, Larysse Maira Cardoso Campos
Silva, Danylo Rafhael Costa
Oliveira, Maria da Conceição Barros
Diniz, Pedro Henrique Bandeira
Paiva, Anselmo Cardoso de
Silva, Aristófanes Corrêa
author2_role author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Nery Júnior, Elmo de Jesus
Silva Neto, Otílio Paulo da
Ribeiro, Francisco Adelton Alves
Lima, Francisco das Chagas Alves
Verdes, Larysse Maira Cardoso Campos
Silva, Danylo Rafhael Costa
Oliveira, Maria da Conceição Barros
Diniz, Pedro Henrique Bandeira
Paiva, Anselmo Cardoso de
Silva, Aristófanes Corrêa
dc.subject.por.fl_str_mv Breast cancer
BI-RADS® Classification
Image processing
Neural networks.
Cáncer de mama
Clasificación BI-RADS®
Procesamiento de imágenes
Redes neuronales.
Câncer de mama
Classificação BI-RADS®
Processamento de imagem
Redes neurais.
topic Breast cancer
BI-RADS® Classification
Image processing
Neural networks.
Cáncer de mama
Clasificación BI-RADS®
Procesamiento de imágenes
Redes neuronales.
Câncer de mama
Classificação BI-RADS®
Processamento de imagem
Redes neurais.
description Breast cancer is the disease with the highest incidence among women worldwide, with an estimate for Brazil in the 2020-2021 biennium about 66,280 new cases of breast cancer, which corresponds to a rate of 29.7% of cases in the female population and about 15,000 deaths from the disease. Mammography is one of the most used tests for early detection of this type of neoplasm. However, errors occur in the reading and interpretation of reports, even a well-trained professional has a success rate between 65% and 75% with an amount of false negative varying between 15% to 30% and a false positive of 7% to 10%, resulting in an unnecessary amount of biopsy, 65% to 90% of tissue biopsies with suspected cancer are benign, causing emotional and physical repercussions for patients. Computer systems can be developed to aid in medical diagnosis. This article applied neural network techniques to develop a computational tool capable of classifying injuries from categories 4 and 5 of the BI-RADS® standard. The results acquired by the software, observed that the best classifier with regard to the accuracy rate was Deep Learning, reaching a percentage of 82.60%, the Support Vectors Machine - SVM had a percentage of 73.97%. This demonstrates that the neural network techniques used in the software design show an efficiency in the lesion classification task.
publishDate 2022
dc.date.none.fl_str_mv 2022-07-09
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/31305
10.33448/rsd-v11i9.31305
url https://rsdjournal.org/index.php/rsd/article/view/31305
identifier_str_mv 10.33448/rsd-v11i9.31305
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/31305/27117
dc.rights.driver.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Research, Society and Development
publisher.none.fl_str_mv Research, Society and Development
dc.source.none.fl_str_mv Research, Society and Development; Vol. 11 No. 9; e26611931305
Research, Society and Development; Vol. 11 Núm. 9; e26611931305
Research, Society and Development; v. 11 n. 9; e26611931305
2525-3409
reponame:Research, Society and Development
instname:Universidade Federal de Itajubá (UNIFEI)
instacron:UNIFEI
instname_str Universidade Federal de Itajubá (UNIFEI)
instacron_str UNIFEI
institution UNIFEI
reponame_str Research, Society and Development
collection Research, Society and Development
repository.name.fl_str_mv Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)
repository.mail.fl_str_mv rsd.articles@gmail.com
_version_ 1797052715719720960