Non-linear models applicable to mortality and cases of COVID-19 in Brazil, Italy and the world
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Research, Society and Development |
Texto Completo: | https://rsdjournal.org/index.php/rsd/article/view/3561 |
Resumo: | An increasing number of cases of infection and death by COVID-19 has been observed in several parts of the world, including Brazil. While scientists are looking for a drug / vaccine capable of combating COVID-19, its devastating action is spreading out of control. In this context, statistical studies and preliminary analyzes of the epidemic situation may be important to provide a basis for disease prevention and control. Thus, the objective of this work was to adjust nonlinear regression models to mortality data and confirmed cases of COVID-19 in Brazil, Italy and the world until 03/31/2020. Data from the Ministry of Health of Brazil and the World Health Organization were used. The models were compared using the Akaike information criterion and the Bayesian information criterion, as well as the determination and adjusted determination coefficients, in addition to the square root of the mean square error. All models presented were adequate to model the studied variables. It is not yet possible to make reliable projections of when the numbers of confirmed cases and deaths will decrease. Social detachment in Brazil is being effective in restricting the progression of the disease by reducing the speed of infection and transmissibility. |
id |
UNIFEI_11266cca0078667374bfb472234af672 |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/3561 |
network_acronym_str |
UNIFEI |
network_name_str |
Research, Society and Development |
repository_id_str |
|
spelling |
Non-linear models applicable to mortality and cases of COVID-19 in Brazil, Italy and the worldModelos no lineales aplicables a mortalidad y casos de COVID-19 en Brasil, Italia y el mundoModelos não lineares aplicados a mortalidade e casos da COVID-19 no Brasil, Itália e mundoNon-linear regressionCoronavirusesPandemicSocial distance.Regresión no linealCoronavirusPandemiaDistancia social.Regressão não linearCoronavírosPandemiaDistanciamento social.An increasing number of cases of infection and death by COVID-19 has been observed in several parts of the world, including Brazil. While scientists are looking for a drug / vaccine capable of combating COVID-19, its devastating action is spreading out of control. In this context, statistical studies and preliminary analyzes of the epidemic situation may be important to provide a basis for disease prevention and control. Thus, the objective of this work was to adjust nonlinear regression models to mortality data and confirmed cases of COVID-19 in Brazil, Italy and the world until 03/31/2020. Data from the Ministry of Health of Brazil and the World Health Organization were used. The models were compared using the Akaike information criterion and the Bayesian information criterion, as well as the determination and adjusted determination coefficients, in addition to the square root of the mean square error. All models presented were adequate to model the studied variables. It is not yet possible to make reliable projections of when the numbers of confirmed cases and deaths will decrease. Social detachment in Brazil is being effective in restricting the progression of the disease by reducing the speed of infection and transmissibility.Se ha observado un número creciente de casos de infección y muerte por COVID-19 en varias partes del mundo, incluido Brasil. Mientras los científicos buscan un medicamento / vacuna capaz de combatir el COVID-19, su acción devastadora se está extendiendo fuera de control. En este contexto, los estudios estadísticos y los análisis preliminares de la situación epidémica pueden ser importantes para proporcionar una base para la prevención y el control de enfermedades. Por lo tanto, el objetivo de este trabajo fue ajustar los modelos de regresión no lineal a los datos de mortalidad y los casos confirmados de COVID-19 en Brasil, Italia y el mundo hasta el 31/03/2020. Se utilizaron datos del Ministerio de Salud de Brasil y de la Organización Mundial de la Salud. Los modelos se compararon utilizando el criterio de información de Akaike y el criterio de información bayesiano, así como la determinación y los coeficientes de determinación ajustados, además de la raíz cuadrada del error cuadrático medio. Todos los modelos presentados fueron adecuados para modelar las variables estudiadas. Todavía no es posible hacer proyecciones confiables de cuándo disminuirá el número de casos confirmados y muertes. El desapego social en Brasil está siendo efectivo para restringir la progresión de la enfermedad al reducir la velocidad de infección y transmisibilidad.Um crescente número de casos de infecção e mortes pelo COVID-19 vem sendo constatado em diversas partes do mundo inclusive no Brasil. Enquanto cientistas buscam algum medicamento/vacina capaz de combater a COVID-19 sua ação devastadora espalha-se sem controle. Neste contexto, estudos estatísticos e análises preliminares da situação epidêmica podem ser importantes para fornecer base na prevenção e controle da doença. Com isso, o objetivo deste trabalho foi ajustar modelos de regressão não linear a dados de mortalidade e casos confirmados da COVID-19 no Brasil, Itália e mundo até 31/03/2020. Utilizaram-se dados do Ministério da Saúde do Brasil e da Organização Mundial de Saúde. A comparação dos modelos foi realizada pelo critério de informação de Akaike e pelo critério de informação bayesiano bem como pelos coeficientes de determinação e de determinação ajustado, além da raiz quadrada do erro quadrático médio. Todos os modelos apresentados foram adequados para modelar as variáveis estudadas. Ainda não é possível fazer projeções seguras de quando os números de casos confirmados e de mortes diminuirão. O distanciamento social no Brasil está sendo eficaz para restringir a progressão da doença por reduzir a velocidade de infecção e transmissibilidade.Research, Society and Development2020-04-20info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/356110.33448/rsd-v9i6.3561Research, Society and Development; Vol. 9 No. 6; e117963561Research, Society and Development; Vol. 9 Núm. 6; e117963561Research, Society and Development; v. 9 n. 6; e1179635612525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIporhttps://rsdjournal.org/index.php/rsd/article/view/3561/3842Copyright (c) 2020 Edgo Jackson Pinto Santiago, Moacyr Cunha Filho, Guilherme Rocha Moreira, DENISE STÉPHANIE DE ALMEIDA FERREIRA, Ana Luíza Xavier Cunha, Ana Karla da Silva Freireinfo:eu-repo/semantics/openAccessSantiago, Edgo Jackson PintoFreire, Ana Karla da SilvaCunha Filho, MoacyrMoreira, Guilherme RochaFerreira, Denise Stéphanie de AlmeidaCunha, Ana Luíza Xavier2020-08-20T18:05:46Zoai:ojs.pkp.sfu.ca:article/3561Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:27:43.879896Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false |
dc.title.none.fl_str_mv |
Non-linear models applicable to mortality and cases of COVID-19 in Brazil, Italy and the world Modelos no lineales aplicables a mortalidad y casos de COVID-19 en Brasil, Italia y el mundo Modelos não lineares aplicados a mortalidade e casos da COVID-19 no Brasil, Itália e mundo |
title |
Non-linear models applicable to mortality and cases of COVID-19 in Brazil, Italy and the world |
spellingShingle |
Non-linear models applicable to mortality and cases of COVID-19 in Brazil, Italy and the world Santiago, Edgo Jackson Pinto Non-linear regression Coronaviruses Pandemic Social distance. Regresión no lineal Coronavirus Pandemia Distancia social. Regressão não linear Coronavíros Pandemia Distanciamento social. |
title_short |
Non-linear models applicable to mortality and cases of COVID-19 in Brazil, Italy and the world |
title_full |
Non-linear models applicable to mortality and cases of COVID-19 in Brazil, Italy and the world |
title_fullStr |
Non-linear models applicable to mortality and cases of COVID-19 in Brazil, Italy and the world |
title_full_unstemmed |
Non-linear models applicable to mortality and cases of COVID-19 in Brazil, Italy and the world |
title_sort |
Non-linear models applicable to mortality and cases of COVID-19 in Brazil, Italy and the world |
author |
Santiago, Edgo Jackson Pinto |
author_facet |
Santiago, Edgo Jackson Pinto Freire, Ana Karla da Silva Cunha Filho, Moacyr Moreira, Guilherme Rocha Ferreira, Denise Stéphanie de Almeida Cunha, Ana Luíza Xavier |
author_role |
author |
author2 |
Freire, Ana Karla da Silva Cunha Filho, Moacyr Moreira, Guilherme Rocha Ferreira, Denise Stéphanie de Almeida Cunha, Ana Luíza Xavier |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Santiago, Edgo Jackson Pinto Freire, Ana Karla da Silva Cunha Filho, Moacyr Moreira, Guilherme Rocha Ferreira, Denise Stéphanie de Almeida Cunha, Ana Luíza Xavier |
dc.subject.por.fl_str_mv |
Non-linear regression Coronaviruses Pandemic Social distance. Regresión no lineal Coronavirus Pandemia Distancia social. Regressão não linear Coronavíros Pandemia Distanciamento social. |
topic |
Non-linear regression Coronaviruses Pandemic Social distance. Regresión no lineal Coronavirus Pandemia Distancia social. Regressão não linear Coronavíros Pandemia Distanciamento social. |
description |
An increasing number of cases of infection and death by COVID-19 has been observed in several parts of the world, including Brazil. While scientists are looking for a drug / vaccine capable of combating COVID-19, its devastating action is spreading out of control. In this context, statistical studies and preliminary analyzes of the epidemic situation may be important to provide a basis for disease prevention and control. Thus, the objective of this work was to adjust nonlinear regression models to mortality data and confirmed cases of COVID-19 in Brazil, Italy and the world until 03/31/2020. Data from the Ministry of Health of Brazil and the World Health Organization were used. The models were compared using the Akaike information criterion and the Bayesian information criterion, as well as the determination and adjusted determination coefficients, in addition to the square root of the mean square error. All models presented were adequate to model the studied variables. It is not yet possible to make reliable projections of when the numbers of confirmed cases and deaths will decrease. Social detachment in Brazil is being effective in restricting the progression of the disease by reducing the speed of infection and transmissibility. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-04-20 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/3561 10.33448/rsd-v9i6.3561 |
url |
https://rsdjournal.org/index.php/rsd/article/view/3561 |
identifier_str_mv |
10.33448/rsd-v9i6.3561 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/3561/3842 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Research, Society and Development |
publisher.none.fl_str_mv |
Research, Society and Development |
dc.source.none.fl_str_mv |
Research, Society and Development; Vol. 9 No. 6; e117963561 Research, Society and Development; Vol. 9 Núm. 6; e117963561 Research, Society and Development; v. 9 n. 6; e117963561 2525-3409 reponame:Research, Society and Development instname:Universidade Federal de Itajubá (UNIFEI) instacron:UNIFEI |
instname_str |
Universidade Federal de Itajubá (UNIFEI) |
instacron_str |
UNIFEI |
institution |
UNIFEI |
reponame_str |
Research, Society and Development |
collection |
Research, Society and Development |
repository.name.fl_str_mv |
Research, Society and Development - Universidade Federal de Itajubá (UNIFEI) |
repository.mail.fl_str_mv |
rsd.articles@gmail.com |
_version_ |
1797052735068045312 |