Artificial Intelligence implemented to recognize patterns of sustainable areas by evaluating the database of socioenvironmental safety restrictions
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Research, Society and Development |
DOI: | 10.33448/rsd-v10i10.18841 |
Texto Completo: | https://rsdjournal.org/index.php/rsd/article/view/18841 |
Resumo: | The several papers recently published, applied to sustainable development, has been considering new methodologies and techniques in identifying the main criteria, in numeric format, that are useful in formulating possible solutions to the solid waste problem. This paper presents the Mathematical and Computational Modeling Process (PM2C), applied in the determination of control variables related to selection of areas destined to the construction of landfills, in order to benefit from new analyzes and values obtained by methods such as AHP (Analytical Hierarchy Process) and GIS (Geographic Information Systems). The main objective of this paper is the use of Artificial Intelligence (AI), through a Decision Tree strategy, as a selective method and optimal solutions in choosing the best area dedicated to the construction of landfills, with the creation and analysis of new values applied to scenarios defined in the paper of Andrade e Barbosa (2015). The results, expressed in analytical and graphical forms, show the individual values for each criterion and new scenarios involved in the phenomena. This paper highlights the importance of incorporating new conditions and criteria to propose a new decision-making rule, simultaneously, associating qualitative and quantitative characteristics, related to social and economic effects, applied to the environment management system. Based on these principles, it was possible to simulate new scenarios that demonstrate, with very high precision, the best values of useful criteria for decision-making in the selection of the optimal area for implementation of a landfill. |
id |
UNIFEI_114b731c87993a21be1b91d58d6d7181 |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/18841 |
network_acronym_str |
UNIFEI |
network_name_str |
Research, Society and Development |
spelling |
Artificial Intelligence implemented to recognize patterns of sustainable areas by evaluating the database of socioenvironmental safety restrictionsInteligencia Artificial se implementada para reconocer patrones de áreas sostenibles mediante la evaluación de la base de datos de restricciones de seguridad socioambientalesInteligência Artificial implementada para reconhecimento de padrões de áreas sustentáveis avaliando o banco de dados das restrições de segurança socioambientaisSustainable DevelopmentEnvironmental ManagementLandfillBio-inspired ComputingDecision TreeArtificial IntelligenceDecision matrix.Desenvolvimiento SustentableGestion AmbientalVertederoSistemas BioinspiradosInteligencia ArtificialÁrbol de DecisiónMatriz de criterios.Desenvolvimento SustentávelGestão AmbientalAterro SanitárioComputação BioinspiradaInteligência ArtificialÁrvore de DecisãoMatriz de critérios.The several papers recently published, applied to sustainable development, has been considering new methodologies and techniques in identifying the main criteria, in numeric format, that are useful in formulating possible solutions to the solid waste problem. This paper presents the Mathematical and Computational Modeling Process (PM2C), applied in the determination of control variables related to selection of areas destined to the construction of landfills, in order to benefit from new analyzes and values obtained by methods such as AHP (Analytical Hierarchy Process) and GIS (Geographic Information Systems). The main objective of this paper is the use of Artificial Intelligence (AI), through a Decision Tree strategy, as a selective method and optimal solutions in choosing the best area dedicated to the construction of landfills, with the creation and analysis of new values applied to scenarios defined in the paper of Andrade e Barbosa (2015). The results, expressed in analytical and graphical forms, show the individual values for each criterion and new scenarios involved in the phenomena. This paper highlights the importance of incorporating new conditions and criteria to propose a new decision-making rule, simultaneously, associating qualitative and quantitative characteristics, related to social and economic effects, applied to the environment management system. Based on these principles, it was possible to simulate new scenarios that demonstrate, with very high precision, the best values of useful criteria for decision-making in the selection of the optimal area for implementation of a landfill.Los diversos artículos publicados recientemente, aplicados al desarrollo sostenible, han considerado nuevas metodologías y técnicas en la identificación de los principales criterios, en formato numérico, que son útiles para formular posibles soluciones al problema de los residuos sólidos. Este artículo presenta el Proceso de Modelado Matemático y Computacional (PM2C) aplicado en la determinación de variables de control relacionadas con la selección de áreas para la construcción de rellenos sanitarios, con el fin de beneficiarse de nuevos análisis y valores obtenidos por métodos como PJA (Proceso Analítico Jerárquico) y SIG (Sistemas de Información Geográfica). El principal objetivo del trabajo es el uso de la Inteligencia Artificial (IA), a través de la estrategia Árbol de Decisión, como método selectivo y soluciones óptimas en la elección de la mejor zona dedicada a la construcción de vertederos, con la creación y análisis de nuevos valores aplicados. a los escenarios definidos en el trabajo de Andrade y Barbosa (2015). Los resultados, expresados en forma analítica y gráfica, muestran los valores individuales para cada criterio y los nuevos escenarios involucrados en los fenómenos. Este artículo destaca la importancia de incorporar nuevas condiciones y criterios para proponer nuevas reglas de toma de decisiones, asociando simultáneamente características cualitativas y cuantitativas, relacionadas con los efectos sociales y económicos, aplicadas al sistema de gestión ambiental. A partir de estos principios, fue posible simular nuevos escenarios que demuestran, con altísima precisión, los mejores valores de los criterios útiles para la toma de decisiones en la selección de la zona óptima para la implementación de un vertedero.Os diversos artigos divulgados recentemente, aplicados no desenvolvimento sustentável, têm considerado novas metodologias e técnicas na identificação dos principais critérios, em formato numérico, que são úteis na formulação de possíveis soluções para o problema dos resíduos sólidos. Este artigo apresenta o Processo de Modelagens Matemática e Computacional (PM2C) aplicado na determinação das variáveis de controle relacionadas à seleção das áreas destinadas à construção de aterros sanitários, de maneira a se beneficiar das novas análises e valores obtidos pelos métodos como AHP (Analytical Hierarchy Process) e o GIS (Geographic Information Systems). O trabalho tem como objetivo primordial o uso de Inteligência Artificial (IA), mediante a estratégia de Árvore de Decisão, como método seletivo e soluções ótimas na escolha da melhor área dedicada a edificação de aterros sanitários, com a criação e análise de novos valores aplicados a cenários definidos no trabalho de Andrade e Barbosa (2015). Os resultados, expressos nas formas analítica e gráfica, exibem os valores individuais para cada critério e novos cenários envolvidos nos fenômenos. Neste artigo, denota-se a importância da incorporação de novas condições e critérios para propor novas regras de tomada de decisão, associando, simultaneamente, características qualitativas e quantitativas, relacionadas aos efeitos sociais e econômicos, aplicado ao sistema de gerenciamento ambiental. Fundamentando nesses princípios, foi possível a simulação de novos cenários que demonstram, com altíssima precisão, os melhores valores dos critérios úteis à tomada de decisão da seleção da área ótima para a implantação de um aterro sanitário.Research, Society and Development2021-08-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/1884110.33448/rsd-v10i10.18841Research, Society and Development; Vol. 10 No. 10; e212101018841Research, Society and Development; Vol. 10 Núm. 10; e212101018841Research, Society and Development; v. 10 n. 10; e2121010188412525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIenghttps://rsdjournal.org/index.php/rsd/article/view/18841/16754Copyright (c) 2021 Julio Leite Azancort Neto; Arleson Lui Silva Gonçalves; Brennus Caio Carvalho da Cruz; Larissa Luz Gomes; Denis Carlos Lima Costa https://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessAzancort Neto, Julio LeiteGonçalves, Arleson Lui Silva Cruz, Brennus Caio Carvalho da Gomes, Larissa Luz Costa , Denis Carlos Lima 2021-10-02T21:49:16Zoai:ojs.pkp.sfu.ca:article/18841Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:38:53.029509Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false |
dc.title.none.fl_str_mv |
Artificial Intelligence implemented to recognize patterns of sustainable areas by evaluating the database of socioenvironmental safety restrictions Inteligencia Artificial se implementada para reconocer patrones de áreas sostenibles mediante la evaluación de la base de datos de restricciones de seguridad socioambientales Inteligência Artificial implementada para reconhecimento de padrões de áreas sustentáveis avaliando o banco de dados das restrições de segurança socioambientais |
title |
Artificial Intelligence implemented to recognize patterns of sustainable areas by evaluating the database of socioenvironmental safety restrictions |
spellingShingle |
Artificial Intelligence implemented to recognize patterns of sustainable areas by evaluating the database of socioenvironmental safety restrictions Artificial Intelligence implemented to recognize patterns of sustainable areas by evaluating the database of socioenvironmental safety restrictions Azancort Neto, Julio Leite Sustainable Development Environmental Management Landfill Bio-inspired Computing Decision Tree Artificial Intelligence Decision matrix. Desenvolvimiento Sustentable Gestion Ambiental Vertedero Sistemas Bioinspirados Inteligencia Artificial Árbol de Decisión Matriz de criterios. Desenvolvimento Sustentável Gestão Ambiental Aterro Sanitário Computação Bioinspirada Inteligência Artificial Árvore de Decisão Matriz de critérios. Azancort Neto, Julio Leite Sustainable Development Environmental Management Landfill Bio-inspired Computing Decision Tree Artificial Intelligence Decision matrix. Desenvolvimiento Sustentable Gestion Ambiental Vertedero Sistemas Bioinspirados Inteligencia Artificial Árbol de Decisión Matriz de criterios. Desenvolvimento Sustentável Gestão Ambiental Aterro Sanitário Computação Bioinspirada Inteligência Artificial Árvore de Decisão Matriz de critérios. |
title_short |
Artificial Intelligence implemented to recognize patterns of sustainable areas by evaluating the database of socioenvironmental safety restrictions |
title_full |
Artificial Intelligence implemented to recognize patterns of sustainable areas by evaluating the database of socioenvironmental safety restrictions |
title_fullStr |
Artificial Intelligence implemented to recognize patterns of sustainable areas by evaluating the database of socioenvironmental safety restrictions Artificial Intelligence implemented to recognize patterns of sustainable areas by evaluating the database of socioenvironmental safety restrictions |
title_full_unstemmed |
Artificial Intelligence implemented to recognize patterns of sustainable areas by evaluating the database of socioenvironmental safety restrictions Artificial Intelligence implemented to recognize patterns of sustainable areas by evaluating the database of socioenvironmental safety restrictions |
title_sort |
Artificial Intelligence implemented to recognize patterns of sustainable areas by evaluating the database of socioenvironmental safety restrictions |
author |
Azancort Neto, Julio Leite |
author_facet |
Azancort Neto, Julio Leite Azancort Neto, Julio Leite Gonçalves, Arleson Lui Silva Cruz, Brennus Caio Carvalho da Gomes, Larissa Luz Costa , Denis Carlos Lima Gonçalves, Arleson Lui Silva Cruz, Brennus Caio Carvalho da Gomes, Larissa Luz Costa , Denis Carlos Lima |
author_role |
author |
author2 |
Gonçalves, Arleson Lui Silva Cruz, Brennus Caio Carvalho da Gomes, Larissa Luz Costa , Denis Carlos Lima |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Azancort Neto, Julio Leite Gonçalves, Arleson Lui Silva Cruz, Brennus Caio Carvalho da Gomes, Larissa Luz Costa , Denis Carlos Lima |
dc.subject.por.fl_str_mv |
Sustainable Development Environmental Management Landfill Bio-inspired Computing Decision Tree Artificial Intelligence Decision matrix. Desenvolvimiento Sustentable Gestion Ambiental Vertedero Sistemas Bioinspirados Inteligencia Artificial Árbol de Decisión Matriz de criterios. Desenvolvimento Sustentável Gestão Ambiental Aterro Sanitário Computação Bioinspirada Inteligência Artificial Árvore de Decisão Matriz de critérios. |
topic |
Sustainable Development Environmental Management Landfill Bio-inspired Computing Decision Tree Artificial Intelligence Decision matrix. Desenvolvimiento Sustentable Gestion Ambiental Vertedero Sistemas Bioinspirados Inteligencia Artificial Árbol de Decisión Matriz de criterios. Desenvolvimento Sustentável Gestão Ambiental Aterro Sanitário Computação Bioinspirada Inteligência Artificial Árvore de Decisão Matriz de critérios. |
description |
The several papers recently published, applied to sustainable development, has been considering new methodologies and techniques in identifying the main criteria, in numeric format, that are useful in formulating possible solutions to the solid waste problem. This paper presents the Mathematical and Computational Modeling Process (PM2C), applied in the determination of control variables related to selection of areas destined to the construction of landfills, in order to benefit from new analyzes and values obtained by methods such as AHP (Analytical Hierarchy Process) and GIS (Geographic Information Systems). The main objective of this paper is the use of Artificial Intelligence (AI), through a Decision Tree strategy, as a selective method and optimal solutions in choosing the best area dedicated to the construction of landfills, with the creation and analysis of new values applied to scenarios defined in the paper of Andrade e Barbosa (2015). The results, expressed in analytical and graphical forms, show the individual values for each criterion and new scenarios involved in the phenomena. This paper highlights the importance of incorporating new conditions and criteria to propose a new decision-making rule, simultaneously, associating qualitative and quantitative characteristics, related to social and economic effects, applied to the environment management system. Based on these principles, it was possible to simulate new scenarios that demonstrate, with very high precision, the best values of useful criteria for decision-making in the selection of the optimal area for implementation of a landfill. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-08-08 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/18841 10.33448/rsd-v10i10.18841 |
url |
https://rsdjournal.org/index.php/rsd/article/view/18841 |
identifier_str_mv |
10.33448/rsd-v10i10.18841 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/18841/16754 |
dc.rights.driver.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Research, Society and Development |
publisher.none.fl_str_mv |
Research, Society and Development |
dc.source.none.fl_str_mv |
Research, Society and Development; Vol. 10 No. 10; e212101018841 Research, Society and Development; Vol. 10 Núm. 10; e212101018841 Research, Society and Development; v. 10 n. 10; e212101018841 2525-3409 reponame:Research, Society and Development instname:Universidade Federal de Itajubá (UNIFEI) instacron:UNIFEI |
instname_str |
Universidade Federal de Itajubá (UNIFEI) |
instacron_str |
UNIFEI |
institution |
UNIFEI |
reponame_str |
Research, Society and Development |
collection |
Research, Society and Development |
repository.name.fl_str_mv |
Research, Society and Development - Universidade Federal de Itajubá (UNIFEI) |
repository.mail.fl_str_mv |
rsd.articles@gmail.com |
_version_ |
1822178548347043840 |
dc.identifier.doi.none.fl_str_mv |
10.33448/rsd-v10i10.18841 |