Distribution and space autocorrelation of illicit drug cases in a northwest agricultural council
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Research, Society and Development |
Texto Completo: | https://rsdjournal.org/index.php/rsd/article/view/10903 |
Resumo: | The article aims to verify the spatial distribution and autocorrelation of cases of individuals indicted for possession of illicit drugs in a municipality in the northeast of Brazil. This is an exploratory, quantitative, cross-sectional study, based on primary documents, based on those of the Finding Reports pertinent to the Institute of Scientific Police of Paraíba, between the years 2013 and 2017. Maps (Lisa and Moran) were generated for the demonstration of the spatial distribution of the notifications, as well as diagrams, using the Moran Global Index and the Local Moran Index, with the aid of the free statistical software The R Project for Statistical Computing (version 3.4.2). The variable “Neighborhood of occurrence” was adopted as the unit of verification to guide the spatial analysis. The neighborhoods of Serrotão (n = 143), José Pinheiro (n = 102) and Bodocongó (n = 77) constituted the three neighborhoods with the highest number of cases recorded throughout the study period. Significant statistical results were found for the local spatial autocorrelation between the peripheral neighborhoods of Serrotão, Bodocongó, Três Irmãs, Malvinas and José Pinheiro, but in different years. In view of this, the present study permeated the decision-making process in the face of the drug phenomenon, in addition to being a useful tool to guide the planning of actions to combat illegal consumption and commercialization in the northeastern rural region. |
id |
UNIFEI_161dcd7abefbb694c951460171d6ed03 |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/10903 |
network_acronym_str |
UNIFEI |
network_name_str |
Research, Society and Development |
repository_id_str |
|
spelling |
Distribution and space autocorrelation of illicit drug cases in a northwest agricultural councilDistribución espacial y auto correlación de casos de drogas ilícitas en un municipio agreste del noresteDistribuição e autocorrelação espacial dos casos de drogas ilícitas em um município do agreste nordestinoGeographic Information SystemsSpatial AnalysisIllicit drugs.Sistemas de Información GeográficaAnálisis espacialDrogas ilícitas.Sistemas de Informação GeográficaAnálise EspacialDrogas ilícitas. The article aims to verify the spatial distribution and autocorrelation of cases of individuals indicted for possession of illicit drugs in a municipality in the northeast of Brazil. This is an exploratory, quantitative, cross-sectional study, based on primary documents, based on those of the Finding Reports pertinent to the Institute of Scientific Police of Paraíba, between the years 2013 and 2017. Maps (Lisa and Moran) were generated for the demonstration of the spatial distribution of the notifications, as well as diagrams, using the Moran Global Index and the Local Moran Index, with the aid of the free statistical software The R Project for Statistical Computing (version 3.4.2). The variable “Neighborhood of occurrence” was adopted as the unit of verification to guide the spatial analysis. The neighborhoods of Serrotão (n = 143), José Pinheiro (n = 102) and Bodocongó (n = 77) constituted the three neighborhoods with the highest number of cases recorded throughout the study period. Significant statistical results were found for the local spatial autocorrelation between the peripheral neighborhoods of Serrotão, Bodocongó, Três Irmãs, Malvinas and José Pinheiro, but in different years. In view of this, the present study permeated the decision-making process in the face of the drug phenomenon, in addition to being a useful tool to guide the planning of actions to combat illegal consumption and commercialization in the northeastern rural region.El artículo tiene como objetivo verificar la distribución espacial y autocorrelación de los casos de personas imputadas por posesión de drogas ilícitas en un municipio del noreste de Brasil. Se trata de un estudio exploratorio, cuantitativo, transversal, con base en documentos primarios, basados en los Informes de Hallazgos pertinentes al Instituto de Policía Científica de Paraíba, entre los años 2013 y 2017. Se generaron mapas (Lisa y Moran) para el demostración de la distribución espacial de las notificaciones, así como diagramas, utilizando el Índice Global de Moran y el Índice de Moran Local, con la ayuda del software estadístico gratuito The R Project for Statistical Computing (versión 3.4.2). Se adoptó la variable “Vecindad de ocurrencia” como unidad de verificación para orientar el análisis espacial. Los barrios de Serrotão (n = 143), José Pinheiro (n = 102) y Bodocongó (n = 77) constituyeron los tres barrios con mayor número de casos registrados durante el período de estudio. Se encontraron resultados estadísticos significativos para la autocorrelación espacial local entre los barrios periféricos de Serrotão, Bodocongó, Três Irmãs, Malvinas y José Pinheiro, pero en diferentes años. Por ello, el presente estudio permeó el proceso de toma de decisiones ante el fenómeno de las drogas, además de ser una herramienta útil para orientar la planificación de acciones de combate al consumo y comercialización ilícitos en la región rural nororiental.O artigo tem como objetivo verificar a distribuição e a autocorrelação espacial dos casos de indivíduos indiciados por porte de drogas ilícitas em um município do agreste nordestino. Trata-se de um estudo exploratório, quantitativo, transversal, baseado em documentos primários, a partir das dos laudos de Constatação pertinentes ao Instituto de Polícia Científica da Paraíba, entre os anos 2013 e 2017. Foram gerados mapas (Lisa e Moran) para a demonstração da distribuição espacial das notificações, além de diagramas, utilizando o Índice de Moran Global e o Índice Local de Moran, com auxílio do software estatístico gratuito The R Project for Statistical Computing (versão 3.4.2). Foi adotada como unidade de verificação a variável “Bairro de ocorrência” para nortear a análise espacial. Os bairros do Serrotão (n=143), José Pinheiro (n=102) e Bodocongó (n=77) constituíram os três bairros com maior número de casos registrados durante todo o período de estudo. Foram encontrados resultados estatísticos significativos para a autocorrelação espacial local entre os bairros periféricos do Serrotão, Bodocongó, Três Irmãs, Malvinas e José Pinheiro, mas em anos diferentes. Diante disso, o presente estudo permeou o norteamento do processo de tomada de decisão frente ao fenômeno das drogas, além de se constituir em uma ferramenta útil para guiar o planejamento de ações de combate ao consumo e comercialização ilegais na região do agreste nordestino.Research, Society and Development2020-12-13info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/1090310.33448/rsd-v9i12.10903Research, Society and Development; Vol. 9 No. 12; e7891210903Research, Society and Development; Vol. 9 Núm. 12; e7891210903Research, Society and Development; v. 9 n. 12; e78912109032525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIporhttps://rsdjournal.org/index.php/rsd/article/view/10903/9681Copyright (c) 2020 Samara Costa da Nóbrega Medeiros; Sayonara Maria Lia Fook; Ricardo Alves de Olindahttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessMedeiros, Samara Costa da NóbregaFook, Sayonara Maria Lia Olinda, Ricardo Alves de2020-12-30T23:32:22Zoai:ojs.pkp.sfu.ca:article/10903Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:32:51.865325Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false |
dc.title.none.fl_str_mv |
Distribution and space autocorrelation of illicit drug cases in a northwest agricultural council Distribución espacial y auto correlación de casos de drogas ilícitas en un municipio agreste del noreste Distribuição e autocorrelação espacial dos casos de drogas ilícitas em um município do agreste nordestino |
title |
Distribution and space autocorrelation of illicit drug cases in a northwest agricultural council |
spellingShingle |
Distribution and space autocorrelation of illicit drug cases in a northwest agricultural council Medeiros, Samara Costa da Nóbrega Geographic Information Systems Spatial Analysis Illicit drugs. Sistemas de Información Geográfica Análisis espacial Drogas ilícitas. Sistemas de Informação Geográfica Análise Espacial Drogas ilícitas. |
title_short |
Distribution and space autocorrelation of illicit drug cases in a northwest agricultural council |
title_full |
Distribution and space autocorrelation of illicit drug cases in a northwest agricultural council |
title_fullStr |
Distribution and space autocorrelation of illicit drug cases in a northwest agricultural council |
title_full_unstemmed |
Distribution and space autocorrelation of illicit drug cases in a northwest agricultural council |
title_sort |
Distribution and space autocorrelation of illicit drug cases in a northwest agricultural council |
author |
Medeiros, Samara Costa da Nóbrega |
author_facet |
Medeiros, Samara Costa da Nóbrega Fook, Sayonara Maria Lia Olinda, Ricardo Alves de |
author_role |
author |
author2 |
Fook, Sayonara Maria Lia Olinda, Ricardo Alves de |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Medeiros, Samara Costa da Nóbrega Fook, Sayonara Maria Lia Olinda, Ricardo Alves de |
dc.subject.por.fl_str_mv |
Geographic Information Systems Spatial Analysis Illicit drugs. Sistemas de Información Geográfica Análisis espacial Drogas ilícitas. Sistemas de Informação Geográfica Análise Espacial Drogas ilícitas. |
topic |
Geographic Information Systems Spatial Analysis Illicit drugs. Sistemas de Información Geográfica Análisis espacial Drogas ilícitas. Sistemas de Informação Geográfica Análise Espacial Drogas ilícitas. |
description |
The article aims to verify the spatial distribution and autocorrelation of cases of individuals indicted for possession of illicit drugs in a municipality in the northeast of Brazil. This is an exploratory, quantitative, cross-sectional study, based on primary documents, based on those of the Finding Reports pertinent to the Institute of Scientific Police of Paraíba, between the years 2013 and 2017. Maps (Lisa and Moran) were generated for the demonstration of the spatial distribution of the notifications, as well as diagrams, using the Moran Global Index and the Local Moran Index, with the aid of the free statistical software The R Project for Statistical Computing (version 3.4.2). The variable “Neighborhood of occurrence” was adopted as the unit of verification to guide the spatial analysis. The neighborhoods of Serrotão (n = 143), José Pinheiro (n = 102) and Bodocongó (n = 77) constituted the three neighborhoods with the highest number of cases recorded throughout the study period. Significant statistical results were found for the local spatial autocorrelation between the peripheral neighborhoods of Serrotão, Bodocongó, Três Irmãs, Malvinas and José Pinheiro, but in different years. In view of this, the present study permeated the decision-making process in the face of the drug phenomenon, in addition to being a useful tool to guide the planning of actions to combat illegal consumption and commercialization in the northeastern rural region. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-13 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/10903 10.33448/rsd-v9i12.10903 |
url |
https://rsdjournal.org/index.php/rsd/article/view/10903 |
identifier_str_mv |
10.33448/rsd-v9i12.10903 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/10903/9681 |
dc.rights.driver.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Research, Society and Development |
publisher.none.fl_str_mv |
Research, Society and Development |
dc.source.none.fl_str_mv |
Research, Society and Development; Vol. 9 No. 12; e7891210903 Research, Society and Development; Vol. 9 Núm. 12; e7891210903 Research, Society and Development; v. 9 n. 12; e7891210903 2525-3409 reponame:Research, Society and Development instname:Universidade Federal de Itajubá (UNIFEI) instacron:UNIFEI |
instname_str |
Universidade Federal de Itajubá (UNIFEI) |
instacron_str |
UNIFEI |
institution |
UNIFEI |
reponame_str |
Research, Society and Development |
collection |
Research, Society and Development |
repository.name.fl_str_mv |
Research, Society and Development - Universidade Federal de Itajubá (UNIFEI) |
repository.mail.fl_str_mv |
rsd.articles@gmail.com |
_version_ |
1797052665985761280 |