Configuration of a Paraconsistent Artificial Neural Network for the Learning from Demonstration Method applied to a Robotic Arm

Detalhes bibliográficos
Autor(a) principal: Gomes, Paulino Machado
Data de Publicação: 2022
Outros Autores: Fernandes, Cláudio Luís Magalhães, Silva Filho, João Inácio da, Silveira, Rodrigo Silvério da, Santo, Leonardo do Espírito, Mario, Mauricio Conceição, Rosa, Vitor da Silva, Torres, Germano Lambert
Tipo de documento: Artigo
Idioma: por
Título da fonte: Research, Society and Development
Texto Completo: https://rsdjournal.org/index.php/rsd/article/view/29720
Resumo: The Annotated Paraconsistent Logic - LPA is a non-classical logic, based on concepts that allow, under certain conditions, to accept the contradiction in its foundations, without invalidating the conclusions. Mathematical interpretations in its associated lattice make it possible to obtain equations and algorithm constructions, which form efficient paraconsistent analysis networks, in treating signals simulating learning. The algorithm used in this research is called Paraconsistent Artificial Neural Cell of Learning (CNAPap), and was created from equations based on LPA. With standardized signals repeatedly applied to its input, CNAPap is capable of gradually storing this information, increasing or decreasing its level of response at the output with asymptotic variation, controlled by a Learning Factor (FA). To run the tests, a set of five CNAPaps forming a learning Paraconsistent Artificial Neural Network (RNAPap), was implemented in an ATMEGA 328p microcontroller and several tests were carried out to validate its operation, acting on learning by demonstration (LfD) in a Robot Manipulator. Considering the fragile mechanical structure of the Robot Manipulator, and the sensor devices adapted to respond to the standards, the laboratory results obtained in the various tests presented were satisfactory, and the microprocessed system built responded efficiently, where the levels of correct answers corresponded to between 75 % to 90%, at all stages of the LfD method. The results of comparative studies showed that RNAPap has dynamic properties capable of acting both in the demonstration learning method and in the imitation method.
id UNIFEI_265625ba2be86eb63ccd3dbb718791b1
oai_identifier_str oai:ojs.pkp.sfu.ca:article/29720
network_acronym_str UNIFEI
network_name_str Research, Society and Development
repository_id_str
spelling Configuration of a Paraconsistent Artificial Neural Network for the Learning from Demonstration Method applied to a Robotic ArmConfiguración de una Red Neuronal Artificial Paraconsistente para el Método de Aprendizaje Demostrativo aplicado a un Brazo RobóticoConfiguração de uma Rede Neural Artificial Paraconsistente para o Método de Aprendizado por Demonstração aplicado à um Braço RobóticoAprendizagem por demonstraçãoEnsinoInteligência ArtificialLógica paraconsistente anotadaRede neural artificial paraconsistente.Paraconsistent Annotated LogicLearning from demonstrationArtificial IntelligenceTeachingParaconsistent artificial neural network.Lógica Paraconsistente AnotadaAprendizaje por DemostraciónEnseñandoInteligencia ArtificialRed neuronal artificial paraconsistente.The Annotated Paraconsistent Logic - LPA is a non-classical logic, based on concepts that allow, under certain conditions, to accept the contradiction in its foundations, without invalidating the conclusions. Mathematical interpretations in its associated lattice make it possible to obtain equations and algorithm constructions, which form efficient paraconsistent analysis networks, in treating signals simulating learning. The algorithm used in this research is called Paraconsistent Artificial Neural Cell of Learning (CNAPap), and was created from equations based on LPA. With standardized signals repeatedly applied to its input, CNAPap is capable of gradually storing this information, increasing or decreasing its level of response at the output with asymptotic variation, controlled by a Learning Factor (FA). To run the tests, a set of five CNAPaps forming a learning Paraconsistent Artificial Neural Network (RNAPap), was implemented in an ATMEGA 328p microcontroller and several tests were carried out to validate its operation, acting on learning by demonstration (LfD) in a Robot Manipulator. Considering the fragile mechanical structure of the Robot Manipulator, and the sensor devices adapted to respond to the standards, the laboratory results obtained in the various tests presented were satisfactory, and the microprocessed system built responded efficiently, where the levels of correct answers corresponded to between 75 % to 90%, at all stages of the LfD method. The results of comparative studies showed that RNAPap has dynamic properties capable of acting both in the demonstration learning method and in the imitation method.La Lógica Paraconsistente Anotada - LPA es una lógica no clásica, basada en conceptos que permiten, bajo ciertas condiciones, aceptar la contradicción en sus fundamentos, sin invalidar las conclusiones. Las interpretaciones matemáticas en su entramado asociado permiten obtener ecuaciones y construcciones algorítmicas, que forman redes de análisis paraconsistentes eficientes, en el tratamiento de señales simulando aprendizaje. El algoritmo utilizado en esta investigación se denomina Célula Neural Artificial de Aprendizaje Paraconsistente (CNAPap), y fue creado a partir de ecuaciones basadas en LPA. Con señales estandarizadas repetidamente aplicadas a su entrada, CNAPap es capaz de almacenar gradualmente esta información, aumentando o disminuyendo su nivel de respuesta a la salida con variación asintótica, controlada por un Factor de Aprendizaje (FA). Para ejecutar las pruebas, se implementó un conjunto de cinco CNAPaps formando una Red Neuronal Artificial Paraconsistente de aprendizaje (RNAPap), en un microcontrolador ATMEGA 328p y se realizaron varias pruebas para validar su funcionamiento, actuando sobre aprendizaje por demostración (LfD) en un Robot Manipulador. Considerando la frágil estructura mecánica del Manipulador Robot, y los dispositivos sensores adaptados para responder a los estándares, los resultados de laboratorio obtenidos en las diversas pruebas presentadas fueron satisfactorios, y el sistema microprocesado construido respondió eficientemente, donde los niveles de aciertos correspondieron a entre 75 % a 90 %, en todas las etapas del método LfD. Los resultados de los estudios comparativos mostraron que RNAPap tiene propiedades dinámicas capaces de actuar tanto en el método de demostración de aprendizaje como en el método de imitación.A Lógica Paraconsistente Anotada – LPA é uma lógica não clássica, baseada em conceitos que permitem, sob certas condições, aceitar a contradição em seus fundamentos, sem invalidar as conclusões. Interpretações matemáticas em seu reticulado associado, possibilitam a obtenção de equações e construções de algoritmos, que formam redes de análise paraconsistentes eficientes, em tratar sinais simulando aprendizagem. O algoritmo utilizado nesta pesquisa, é denominado de Célula Neural Artificial Paraconsistente de aprendizagem (CNAPap), e foi criado a partir das equações baseadas em LPA. Com sinais padronizados repetidamente aplicados à sua entrada, a CNAPap é capaz de armazenar gradativamente estas informações, aumentando ou diminuindo seu nível de resposta na saída com variação assintótica, controlado por um Fator de Aprendizagem (FA). Para executar os testes, um conjunto de cinco CNAPaps formando uma Rede Neural Artificial Paraconsistente de aprendizagem (RNAPap), foi implementado em um microcontrolador ATMEGA 328p e vários ensaios foram realizados para validar o seu funcionamento, atuando no aprendizado por demonstração (LfD) em um Robô Manipulador. Considerando a frágil estrutura mecânica do Robô Manipulador, e dos dispositivos sensores adaptados para responder aos padrões, os resultados laboratoriais obtidos nos diversos testes apresentados foram satisfatórios, e o Sistema microprocessado construído respondeu de modo eficiente, onde os níveis de acertos, corresponderam entre 75% a 90%, em todas as etapas do método de LfD. Os resultados de estudos comparativos, mostraram que a RNAPap possui propriedades dinâmicas com capacidade de atuar, tanto no método de aprendizagem por demonstração, como no método de imitação.Research, Society and Development2022-05-21info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/2972010.33448/rsd-v11i7.29720Research, Society and Development; Vol. 11 No. 7; e20911729720Research, Society and Development; Vol. 11 Núm. 7; e20911729720Research, Society and Development; v. 11 n. 7; e209117297202525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIporhttps://rsdjournal.org/index.php/rsd/article/view/29720/25785Copyright (c) 2022 Paulino Machado Gomes; Cláudio Luís Magalhães Fernandes; João Inácio da Silva Filho; Rodrigo Silvério da Silveira; Leonardo do Espírito Santo; Mauricio Conceição Mario; Vitor da Silva Rosa; Germano Lambert Torreshttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessGomes, Paulino Machado Fernandes, Cláudio Luís Magalhães Silva Filho, João Inácio da Silveira, Rodrigo Silvério da Santo, Leonardo do Espírito Mario, Mauricio Conceição Rosa, Vitor da Silva Torres, Germano Lambert 2022-06-06T15:12:05Zoai:ojs.pkp.sfu.ca:article/29720Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:46:43.715974Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false
dc.title.none.fl_str_mv Configuration of a Paraconsistent Artificial Neural Network for the Learning from Demonstration Method applied to a Robotic Arm
Configuración de una Red Neuronal Artificial Paraconsistente para el Método de Aprendizaje Demostrativo aplicado a un Brazo Robótico
Configuração de uma Rede Neural Artificial Paraconsistente para o Método de Aprendizado por Demonstração aplicado à um Braço Robótico
title Configuration of a Paraconsistent Artificial Neural Network for the Learning from Demonstration Method applied to a Robotic Arm
spellingShingle Configuration of a Paraconsistent Artificial Neural Network for the Learning from Demonstration Method applied to a Robotic Arm
Gomes, Paulino Machado
Aprendizagem por demonstração
Ensino
Inteligência Artificial
Lógica paraconsistente anotada
Rede neural artificial paraconsistente.
Paraconsistent Annotated Logic
Learning from demonstration
Artificial Intelligence
Teaching
Paraconsistent artificial neural network.
Lógica Paraconsistente Anotada
Aprendizaje por Demostración
Enseñando
Inteligencia Artificial
Red neuronal artificial paraconsistente.
title_short Configuration of a Paraconsistent Artificial Neural Network for the Learning from Demonstration Method applied to a Robotic Arm
title_full Configuration of a Paraconsistent Artificial Neural Network for the Learning from Demonstration Method applied to a Robotic Arm
title_fullStr Configuration of a Paraconsistent Artificial Neural Network for the Learning from Demonstration Method applied to a Robotic Arm
title_full_unstemmed Configuration of a Paraconsistent Artificial Neural Network for the Learning from Demonstration Method applied to a Robotic Arm
title_sort Configuration of a Paraconsistent Artificial Neural Network for the Learning from Demonstration Method applied to a Robotic Arm
author Gomes, Paulino Machado
author_facet Gomes, Paulino Machado
Fernandes, Cláudio Luís Magalhães
Silva Filho, João Inácio da
Silveira, Rodrigo Silvério da
Santo, Leonardo do Espírito
Mario, Mauricio Conceição
Rosa, Vitor da Silva
Torres, Germano Lambert
author_role author
author2 Fernandes, Cláudio Luís Magalhães
Silva Filho, João Inácio da
Silveira, Rodrigo Silvério da
Santo, Leonardo do Espírito
Mario, Mauricio Conceição
Rosa, Vitor da Silva
Torres, Germano Lambert
author2_role author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Gomes, Paulino Machado
Fernandes, Cláudio Luís Magalhães
Silva Filho, João Inácio da
Silveira, Rodrigo Silvério da
Santo, Leonardo do Espírito
Mario, Mauricio Conceição
Rosa, Vitor da Silva
Torres, Germano Lambert
dc.subject.por.fl_str_mv Aprendizagem por demonstração
Ensino
Inteligência Artificial
Lógica paraconsistente anotada
Rede neural artificial paraconsistente.
Paraconsistent Annotated Logic
Learning from demonstration
Artificial Intelligence
Teaching
Paraconsistent artificial neural network.
Lógica Paraconsistente Anotada
Aprendizaje por Demostración
Enseñando
Inteligencia Artificial
Red neuronal artificial paraconsistente.
topic Aprendizagem por demonstração
Ensino
Inteligência Artificial
Lógica paraconsistente anotada
Rede neural artificial paraconsistente.
Paraconsistent Annotated Logic
Learning from demonstration
Artificial Intelligence
Teaching
Paraconsistent artificial neural network.
Lógica Paraconsistente Anotada
Aprendizaje por Demostración
Enseñando
Inteligencia Artificial
Red neuronal artificial paraconsistente.
description The Annotated Paraconsistent Logic - LPA is a non-classical logic, based on concepts that allow, under certain conditions, to accept the contradiction in its foundations, without invalidating the conclusions. Mathematical interpretations in its associated lattice make it possible to obtain equations and algorithm constructions, which form efficient paraconsistent analysis networks, in treating signals simulating learning. The algorithm used in this research is called Paraconsistent Artificial Neural Cell of Learning (CNAPap), and was created from equations based on LPA. With standardized signals repeatedly applied to its input, CNAPap is capable of gradually storing this information, increasing or decreasing its level of response at the output with asymptotic variation, controlled by a Learning Factor (FA). To run the tests, a set of five CNAPaps forming a learning Paraconsistent Artificial Neural Network (RNAPap), was implemented in an ATMEGA 328p microcontroller and several tests were carried out to validate its operation, acting on learning by demonstration (LfD) in a Robot Manipulator. Considering the fragile mechanical structure of the Robot Manipulator, and the sensor devices adapted to respond to the standards, the laboratory results obtained in the various tests presented were satisfactory, and the microprocessed system built responded efficiently, where the levels of correct answers corresponded to between 75 % to 90%, at all stages of the LfD method. The results of comparative studies showed that RNAPap has dynamic properties capable of acting both in the demonstration learning method and in the imitation method.
publishDate 2022
dc.date.none.fl_str_mv 2022-05-21
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/29720
10.33448/rsd-v11i7.29720
url https://rsdjournal.org/index.php/rsd/article/view/29720
identifier_str_mv 10.33448/rsd-v11i7.29720
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/29720/25785
dc.rights.driver.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Research, Society and Development
publisher.none.fl_str_mv Research, Society and Development
dc.source.none.fl_str_mv Research, Society and Development; Vol. 11 No. 7; e20911729720
Research, Society and Development; Vol. 11 Núm. 7; e20911729720
Research, Society and Development; v. 11 n. 7; e20911729720
2525-3409
reponame:Research, Society and Development
instname:Universidade Federal de Itajubá (UNIFEI)
instacron:UNIFEI
instname_str Universidade Federal de Itajubá (UNIFEI)
instacron_str UNIFEI
institution UNIFEI
reponame_str Research, Society and Development
collection Research, Society and Development
repository.name.fl_str_mv Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)
repository.mail.fl_str_mv rsd.articles@gmail.com
_version_ 1797052766459265024