Configuration of a Paraconsistent Artificial Neural Network for the Learning from Demonstration Method applied to a Robotic Arm
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Research, Society and Development |
Texto Completo: | https://rsdjournal.org/index.php/rsd/article/view/29720 |
Resumo: | The Annotated Paraconsistent Logic - LPA is a non-classical logic, based on concepts that allow, under certain conditions, to accept the contradiction in its foundations, without invalidating the conclusions. Mathematical interpretations in its associated lattice make it possible to obtain equations and algorithm constructions, which form efficient paraconsistent analysis networks, in treating signals simulating learning. The algorithm used in this research is called Paraconsistent Artificial Neural Cell of Learning (CNAPap), and was created from equations based on LPA. With standardized signals repeatedly applied to its input, CNAPap is capable of gradually storing this information, increasing or decreasing its level of response at the output with asymptotic variation, controlled by a Learning Factor (FA). To run the tests, a set of five CNAPaps forming a learning Paraconsistent Artificial Neural Network (RNAPap), was implemented in an ATMEGA 328p microcontroller and several tests were carried out to validate its operation, acting on learning by demonstration (LfD) in a Robot Manipulator. Considering the fragile mechanical structure of the Robot Manipulator, and the sensor devices adapted to respond to the standards, the laboratory results obtained in the various tests presented were satisfactory, and the microprocessed system built responded efficiently, where the levels of correct answers corresponded to between 75 % to 90%, at all stages of the LfD method. The results of comparative studies showed that RNAPap has dynamic properties capable of acting both in the demonstration learning method and in the imitation method. |
id |
UNIFEI_265625ba2be86eb63ccd3dbb718791b1 |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/29720 |
network_acronym_str |
UNIFEI |
network_name_str |
Research, Society and Development |
repository_id_str |
|
spelling |
Configuration of a Paraconsistent Artificial Neural Network for the Learning from Demonstration Method applied to a Robotic ArmConfiguración de una Red Neuronal Artificial Paraconsistente para el Método de Aprendizaje Demostrativo aplicado a un Brazo RobóticoConfiguração de uma Rede Neural Artificial Paraconsistente para o Método de Aprendizado por Demonstração aplicado à um Braço RobóticoAprendizagem por demonstraçãoEnsinoInteligência ArtificialLógica paraconsistente anotadaRede neural artificial paraconsistente.Paraconsistent Annotated LogicLearning from demonstrationArtificial IntelligenceTeachingParaconsistent artificial neural network.Lógica Paraconsistente AnotadaAprendizaje por DemostraciónEnseñandoInteligencia ArtificialRed neuronal artificial paraconsistente.The Annotated Paraconsistent Logic - LPA is a non-classical logic, based on concepts that allow, under certain conditions, to accept the contradiction in its foundations, without invalidating the conclusions. Mathematical interpretations in its associated lattice make it possible to obtain equations and algorithm constructions, which form efficient paraconsistent analysis networks, in treating signals simulating learning. The algorithm used in this research is called Paraconsistent Artificial Neural Cell of Learning (CNAPap), and was created from equations based on LPA. With standardized signals repeatedly applied to its input, CNAPap is capable of gradually storing this information, increasing or decreasing its level of response at the output with asymptotic variation, controlled by a Learning Factor (FA). To run the tests, a set of five CNAPaps forming a learning Paraconsistent Artificial Neural Network (RNAPap), was implemented in an ATMEGA 328p microcontroller and several tests were carried out to validate its operation, acting on learning by demonstration (LfD) in a Robot Manipulator. Considering the fragile mechanical structure of the Robot Manipulator, and the sensor devices adapted to respond to the standards, the laboratory results obtained in the various tests presented were satisfactory, and the microprocessed system built responded efficiently, where the levels of correct answers corresponded to between 75 % to 90%, at all stages of the LfD method. The results of comparative studies showed that RNAPap has dynamic properties capable of acting both in the demonstration learning method and in the imitation method.La Lógica Paraconsistente Anotada - LPA es una lógica no clásica, basada en conceptos que permiten, bajo ciertas condiciones, aceptar la contradicción en sus fundamentos, sin invalidar las conclusiones. Las interpretaciones matemáticas en su entramado asociado permiten obtener ecuaciones y construcciones algorítmicas, que forman redes de análisis paraconsistentes eficientes, en el tratamiento de señales simulando aprendizaje. El algoritmo utilizado en esta investigación se denomina Célula Neural Artificial de Aprendizaje Paraconsistente (CNAPap), y fue creado a partir de ecuaciones basadas en LPA. Con señales estandarizadas repetidamente aplicadas a su entrada, CNAPap es capaz de almacenar gradualmente esta información, aumentando o disminuyendo su nivel de respuesta a la salida con variación asintótica, controlada por un Factor de Aprendizaje (FA). Para ejecutar las pruebas, se implementó un conjunto de cinco CNAPaps formando una Red Neuronal Artificial Paraconsistente de aprendizaje (RNAPap), en un microcontrolador ATMEGA 328p y se realizaron varias pruebas para validar su funcionamiento, actuando sobre aprendizaje por demostración (LfD) en un Robot Manipulador. Considerando la frágil estructura mecánica del Manipulador Robot, y los dispositivos sensores adaptados para responder a los estándares, los resultados de laboratorio obtenidos en las diversas pruebas presentadas fueron satisfactorios, y el sistema microprocesado construido respondió eficientemente, donde los niveles de aciertos correspondieron a entre 75 % a 90 %, en todas las etapas del método LfD. Los resultados de los estudios comparativos mostraron que RNAPap tiene propiedades dinámicas capaces de actuar tanto en el método de demostración de aprendizaje como en el método de imitación.A Lógica Paraconsistente Anotada – LPA é uma lógica não clássica, baseada em conceitos que permitem, sob certas condições, aceitar a contradição em seus fundamentos, sem invalidar as conclusões. Interpretações matemáticas em seu reticulado associado, possibilitam a obtenção de equações e construções de algoritmos, que formam redes de análise paraconsistentes eficientes, em tratar sinais simulando aprendizagem. O algoritmo utilizado nesta pesquisa, é denominado de Célula Neural Artificial Paraconsistente de aprendizagem (CNAPap), e foi criado a partir das equações baseadas em LPA. Com sinais padronizados repetidamente aplicados à sua entrada, a CNAPap é capaz de armazenar gradativamente estas informações, aumentando ou diminuindo seu nível de resposta na saída com variação assintótica, controlado por um Fator de Aprendizagem (FA). Para executar os testes, um conjunto de cinco CNAPaps formando uma Rede Neural Artificial Paraconsistente de aprendizagem (RNAPap), foi implementado em um microcontrolador ATMEGA 328p e vários ensaios foram realizados para validar o seu funcionamento, atuando no aprendizado por demonstração (LfD) em um Robô Manipulador. Considerando a frágil estrutura mecânica do Robô Manipulador, e dos dispositivos sensores adaptados para responder aos padrões, os resultados laboratoriais obtidos nos diversos testes apresentados foram satisfatórios, e o Sistema microprocessado construído respondeu de modo eficiente, onde os níveis de acertos, corresponderam entre 75% a 90%, em todas as etapas do método de LfD. Os resultados de estudos comparativos, mostraram que a RNAPap possui propriedades dinâmicas com capacidade de atuar, tanto no método de aprendizagem por demonstração, como no método de imitação.Research, Society and Development2022-05-21info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/2972010.33448/rsd-v11i7.29720Research, Society and Development; Vol. 11 No. 7; e20911729720Research, Society and Development; Vol. 11 Núm. 7; e20911729720Research, Society and Development; v. 11 n. 7; e209117297202525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIporhttps://rsdjournal.org/index.php/rsd/article/view/29720/25785Copyright (c) 2022 Paulino Machado Gomes; Cláudio Luís Magalhães Fernandes; João Inácio da Silva Filho; Rodrigo Silvério da Silveira; Leonardo do Espírito Santo; Mauricio Conceição Mario; Vitor da Silva Rosa; Germano Lambert Torreshttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessGomes, Paulino Machado Fernandes, Cláudio Luís Magalhães Silva Filho, João Inácio da Silveira, Rodrigo Silvério da Santo, Leonardo do Espírito Mario, Mauricio Conceição Rosa, Vitor da Silva Torres, Germano Lambert 2022-06-06T15:12:05Zoai:ojs.pkp.sfu.ca:article/29720Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:46:43.715974Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false |
dc.title.none.fl_str_mv |
Configuration of a Paraconsistent Artificial Neural Network for the Learning from Demonstration Method applied to a Robotic Arm Configuración de una Red Neuronal Artificial Paraconsistente para el Método de Aprendizaje Demostrativo aplicado a un Brazo Robótico Configuração de uma Rede Neural Artificial Paraconsistente para o Método de Aprendizado por Demonstração aplicado à um Braço Robótico |
title |
Configuration of a Paraconsistent Artificial Neural Network for the Learning from Demonstration Method applied to a Robotic Arm |
spellingShingle |
Configuration of a Paraconsistent Artificial Neural Network for the Learning from Demonstration Method applied to a Robotic Arm Gomes, Paulino Machado Aprendizagem por demonstração Ensino Inteligência Artificial Lógica paraconsistente anotada Rede neural artificial paraconsistente. Paraconsistent Annotated Logic Learning from demonstration Artificial Intelligence Teaching Paraconsistent artificial neural network. Lógica Paraconsistente Anotada Aprendizaje por Demostración Enseñando Inteligencia Artificial Red neuronal artificial paraconsistente. |
title_short |
Configuration of a Paraconsistent Artificial Neural Network for the Learning from Demonstration Method applied to a Robotic Arm |
title_full |
Configuration of a Paraconsistent Artificial Neural Network for the Learning from Demonstration Method applied to a Robotic Arm |
title_fullStr |
Configuration of a Paraconsistent Artificial Neural Network for the Learning from Demonstration Method applied to a Robotic Arm |
title_full_unstemmed |
Configuration of a Paraconsistent Artificial Neural Network for the Learning from Demonstration Method applied to a Robotic Arm |
title_sort |
Configuration of a Paraconsistent Artificial Neural Network for the Learning from Demonstration Method applied to a Robotic Arm |
author |
Gomes, Paulino Machado |
author_facet |
Gomes, Paulino Machado Fernandes, Cláudio Luís Magalhães Silva Filho, João Inácio da Silveira, Rodrigo Silvério da Santo, Leonardo do Espírito Mario, Mauricio Conceição Rosa, Vitor da Silva Torres, Germano Lambert |
author_role |
author |
author2 |
Fernandes, Cláudio Luís Magalhães Silva Filho, João Inácio da Silveira, Rodrigo Silvério da Santo, Leonardo do Espírito Mario, Mauricio Conceição Rosa, Vitor da Silva Torres, Germano Lambert |
author2_role |
author author author author author author author |
dc.contributor.author.fl_str_mv |
Gomes, Paulino Machado Fernandes, Cláudio Luís Magalhães Silva Filho, João Inácio da Silveira, Rodrigo Silvério da Santo, Leonardo do Espírito Mario, Mauricio Conceição Rosa, Vitor da Silva Torres, Germano Lambert |
dc.subject.por.fl_str_mv |
Aprendizagem por demonstração Ensino Inteligência Artificial Lógica paraconsistente anotada Rede neural artificial paraconsistente. Paraconsistent Annotated Logic Learning from demonstration Artificial Intelligence Teaching Paraconsistent artificial neural network. Lógica Paraconsistente Anotada Aprendizaje por Demostración Enseñando Inteligencia Artificial Red neuronal artificial paraconsistente. |
topic |
Aprendizagem por demonstração Ensino Inteligência Artificial Lógica paraconsistente anotada Rede neural artificial paraconsistente. Paraconsistent Annotated Logic Learning from demonstration Artificial Intelligence Teaching Paraconsistent artificial neural network. Lógica Paraconsistente Anotada Aprendizaje por Demostración Enseñando Inteligencia Artificial Red neuronal artificial paraconsistente. |
description |
The Annotated Paraconsistent Logic - LPA is a non-classical logic, based on concepts that allow, under certain conditions, to accept the contradiction in its foundations, without invalidating the conclusions. Mathematical interpretations in its associated lattice make it possible to obtain equations and algorithm constructions, which form efficient paraconsistent analysis networks, in treating signals simulating learning. The algorithm used in this research is called Paraconsistent Artificial Neural Cell of Learning (CNAPap), and was created from equations based on LPA. With standardized signals repeatedly applied to its input, CNAPap is capable of gradually storing this information, increasing or decreasing its level of response at the output with asymptotic variation, controlled by a Learning Factor (FA). To run the tests, a set of five CNAPaps forming a learning Paraconsistent Artificial Neural Network (RNAPap), was implemented in an ATMEGA 328p microcontroller and several tests were carried out to validate its operation, acting on learning by demonstration (LfD) in a Robot Manipulator. Considering the fragile mechanical structure of the Robot Manipulator, and the sensor devices adapted to respond to the standards, the laboratory results obtained in the various tests presented were satisfactory, and the microprocessed system built responded efficiently, where the levels of correct answers corresponded to between 75 % to 90%, at all stages of the LfD method. The results of comparative studies showed that RNAPap has dynamic properties capable of acting both in the demonstration learning method and in the imitation method. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-05-21 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/29720 10.33448/rsd-v11i7.29720 |
url |
https://rsdjournal.org/index.php/rsd/article/view/29720 |
identifier_str_mv |
10.33448/rsd-v11i7.29720 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/29720/25785 |
dc.rights.driver.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Research, Society and Development |
publisher.none.fl_str_mv |
Research, Society and Development |
dc.source.none.fl_str_mv |
Research, Society and Development; Vol. 11 No. 7; e20911729720 Research, Society and Development; Vol. 11 Núm. 7; e20911729720 Research, Society and Development; v. 11 n. 7; e20911729720 2525-3409 reponame:Research, Society and Development instname:Universidade Federal de Itajubá (UNIFEI) instacron:UNIFEI |
instname_str |
Universidade Federal de Itajubá (UNIFEI) |
instacron_str |
UNIFEI |
institution |
UNIFEI |
reponame_str |
Research, Society and Development |
collection |
Research, Society and Development |
repository.name.fl_str_mv |
Research, Society and Development - Universidade Federal de Itajubá (UNIFEI) |
repository.mail.fl_str_mv |
rsd.articles@gmail.com |
_version_ |
1797052766459265024 |