The application of Models Portability to predict undergraduate students’ performance by using Transfer Learning

Detalhes bibliográficos
Autor(a) principal: Beltran, Carlos Antonio R.
Data de Publicação: 2022
Outros Autores: Xavier Júnior, João Carlos, Barreto, Cephas Alves da Silveira, Gorgônio, Arthur Costa, Costa, Song Jong Márcio Simioni da
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Research, Society and Development
Texto Completo: https://rsdjournal.org/index.php/rsd/article/view/27938
Resumo: One of the great challenges of education in recent years has been to accurately and reliably predict students’ performance in order to apply different strategies in order to help them with their academic deficiencies. Based on this fact, the main goal of this work is to apply a Transfer Learning approach on Learning Management Systems logs (i.e., Moodle) in order to achieve good portability of models and then predict the performance of undergraduate students. Two different scenarios have been implemented considering the activities of each course used in Moodle, the group of similar courses of the same degree as the first scenario and the group of a similar level of usage of activities as the second one. Empirical analysis has been conducted in order to evaluate the performance of the models created with three well-known classification algorithms (i.e., Decision Tree, Random Forest and Naive Bayes). AUC ROC, F-Measure, Precision and Recall have been applied as prediction measures for choosing the best models and evaluating their portability performance to the other courses. Even in the early stage, the experimental results encourage us to state that it is possible to apply transfer predictive models to the same group of courses in the majority of the cases.
id UNIFEI_418938276f27818a24ad873710473665
oai_identifier_str oai:ojs.pkp.sfu.ca:article/27938
network_acronym_str UNIFEI
network_name_str Research, Society and Development
repository_id_str
spelling The application of Models Portability to predict undergraduate students’ performance by using Transfer LearningAplicación de Portabilidad de Modelos para predicción de desempeño de estudiantes de pregrado usando Transferencia de AprendizajeAplicação de Portabilidade de Modelos para predição de desempenho de estudantes de graduação usando Transfer LearningTransfer LearningMachine LearningStudent PerformanceMoodle.Transferencia de AprendizajeAprendizaje AutomáticoRendimiento EstudiantilMoodle.Transferência de AprendizadoAprendizado de MáquinaDesempenho do alunoMoodle.One of the great challenges of education in recent years has been to accurately and reliably predict students’ performance in order to apply different strategies in order to help them with their academic deficiencies. Based on this fact, the main goal of this work is to apply a Transfer Learning approach on Learning Management Systems logs (i.e., Moodle) in order to achieve good portability of models and then predict the performance of undergraduate students. Two different scenarios have been implemented considering the activities of each course used in Moodle, the group of similar courses of the same degree as the first scenario and the group of a similar level of usage of activities as the second one. Empirical analysis has been conducted in order to evaluate the performance of the models created with three well-known classification algorithms (i.e., Decision Tree, Random Forest and Naive Bayes). AUC ROC, F-Measure, Precision and Recall have been applied as prediction measures for choosing the best models and evaluating their portability performance to the other courses. Even in the early stage, the experimental results encourage us to state that it is possible to apply transfer predictive models to the same group of courses in the majority of the cases.Uno de los grandes retos de la educación en los últimos años ha sido predecir con precisión y fiabilidad el rendimiento de los alumnos para poder aplicar distintas estrategias que les ayuden a afrontar sus deficiencias académicas. Basado en este hecho, el objetivo principal de este trabajo es aplicar un enfoque de transferencia de aprendizaje en los registros del sistema de gestión de aprendizaje (i.e., Moodle) para obtener una buena portabilidad del modelo y, con eso, predecir el rendimiento de los estudiantes de pregrado. Se implementaron dos escenarios diferentes considerando las actividades de cada curso utilizado en Moodle, el primer escenario, con el grupo de cursos similares de la misma especialidad, y el segundo escenario, con el grupo de niveles de uso de actividades. Se realizó un análisis empírico para evaluar el rendimiento de los modelos creados con tres algoritmos de clasificación bien conocidos (i.e., Árbol de Decisión, Bosque Aleatorio y Naive Bayes). Además, las métricas AUC ROC, F-Measure, Precision y Recall se utilizaron como medidas predictivas para elegir los mejores modelos y evaluar su rendimiento de portabilidad a los otros cursos. Los resultados experimentales nos animan a afirmar que es posible aplicar la transferencia de modelos predictivos a un mismo grupo de cursos en la mayoría de los casos.Um dos grandes desafios da educação nos últimos anos tem sido prever com precisão e confiabilidade o desempenho dos alunos a fim de aplicar diferentes estratégias para ajudá-los em suas deficiências acadêmicas. Com base neste fato, o objetivo principal deste trabalho é aplicar uma abordagem de Transferência de Aprendizagem em logs de Sistemas de Gestão de Aprendizagem (i.e., Moodle) a fim de obter uma boa portabilidade de modelos e, com isso, prever o desempenho dos alunos de graduação. Dois cenários diferentes foram implementados considerando as atividades de cada curso utilizado no Moodle, o primeiro cenário, com o grupo de cursos similares de mesma graduação, e o segundo cenário, com o grupo de níveis de utilização de atividades. A análise empírica foi realizada para avaliar o desempenho dos modelos criados com três algoritmos de classificação bem conhecidos (i.e., Árvore de Decisão, Random Forest e Naive Bayes). Além disso, as métricas AUC ROC, F-Measure, Precision e Recall foram usadas como medidas de predição para escolher os melhores modelos e avaliar seu desempenho de portabilidade para os demais cursos. Os resultados experimentais nos encorajam a afirmar que é possível aplicar a transferência de modelos preditivos para o mesmo grupo de cursos na maioria dos casos.Research, Society and Development2022-03-29info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/2793810.33448/rsd-v11i5.27938Research, Society and Development; Vol. 11 No. 5; e6511527938Research, Society and Development; Vol. 11 Núm. 5; e6511527938Research, Society and Development; v. 11 n. 5; e65115279382525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIenghttps://rsdjournal.org/index.php/rsd/article/view/27938/24331Copyright (c) 2022 Carlos Antonio R. Beltran; João Carlos Xavier Júnior; Cephas Alves da Silveira Barreto; Arthur Costa Gorgônio; Song Jong Márcio Simioni da Costahttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessBeltran, Carlos Antonio R. Xavier Júnior, João Carlos Barreto, Cephas Alves da SilveiraGorgônio, Arthur CostaCosta, Song Jong Márcio Simioni da 2022-04-17T18:18:56Zoai:ojs.pkp.sfu.ca:article/27938Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:45:30.838470Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false
dc.title.none.fl_str_mv The application of Models Portability to predict undergraduate students’ performance by using Transfer Learning
Aplicación de Portabilidad de Modelos para predicción de desempeño de estudiantes de pregrado usando Transferencia de Aprendizaje
Aplicação de Portabilidade de Modelos para predição de desempenho de estudantes de graduação usando Transfer Learning
title The application of Models Portability to predict undergraduate students’ performance by using Transfer Learning
spellingShingle The application of Models Portability to predict undergraduate students’ performance by using Transfer Learning
Beltran, Carlos Antonio R.
Transfer Learning
Machine Learning
Student Performance
Moodle.
Transferencia de Aprendizaje
Aprendizaje Automático
Rendimiento Estudiantil
Moodle.
Transferência de Aprendizado
Aprendizado de Máquina
Desempenho do aluno
Moodle.
title_short The application of Models Portability to predict undergraduate students’ performance by using Transfer Learning
title_full The application of Models Portability to predict undergraduate students’ performance by using Transfer Learning
title_fullStr The application of Models Portability to predict undergraduate students’ performance by using Transfer Learning
title_full_unstemmed The application of Models Portability to predict undergraduate students’ performance by using Transfer Learning
title_sort The application of Models Portability to predict undergraduate students’ performance by using Transfer Learning
author Beltran, Carlos Antonio R.
author_facet Beltran, Carlos Antonio R.
Xavier Júnior, João Carlos
Barreto, Cephas Alves da Silveira
Gorgônio, Arthur Costa
Costa, Song Jong Márcio Simioni da
author_role author
author2 Xavier Júnior, João Carlos
Barreto, Cephas Alves da Silveira
Gorgônio, Arthur Costa
Costa, Song Jong Márcio Simioni da
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Beltran, Carlos Antonio R.
Xavier Júnior, João Carlos
Barreto, Cephas Alves da Silveira
Gorgônio, Arthur Costa
Costa, Song Jong Márcio Simioni da
dc.subject.por.fl_str_mv Transfer Learning
Machine Learning
Student Performance
Moodle.
Transferencia de Aprendizaje
Aprendizaje Automático
Rendimiento Estudiantil
Moodle.
Transferência de Aprendizado
Aprendizado de Máquina
Desempenho do aluno
Moodle.
topic Transfer Learning
Machine Learning
Student Performance
Moodle.
Transferencia de Aprendizaje
Aprendizaje Automático
Rendimiento Estudiantil
Moodle.
Transferência de Aprendizado
Aprendizado de Máquina
Desempenho do aluno
Moodle.
description One of the great challenges of education in recent years has been to accurately and reliably predict students’ performance in order to apply different strategies in order to help them with their academic deficiencies. Based on this fact, the main goal of this work is to apply a Transfer Learning approach on Learning Management Systems logs (i.e., Moodle) in order to achieve good portability of models and then predict the performance of undergraduate students. Two different scenarios have been implemented considering the activities of each course used in Moodle, the group of similar courses of the same degree as the first scenario and the group of a similar level of usage of activities as the second one. Empirical analysis has been conducted in order to evaluate the performance of the models created with three well-known classification algorithms (i.e., Decision Tree, Random Forest and Naive Bayes). AUC ROC, F-Measure, Precision and Recall have been applied as prediction measures for choosing the best models and evaluating their portability performance to the other courses. Even in the early stage, the experimental results encourage us to state that it is possible to apply transfer predictive models to the same group of courses in the majority of the cases.
publishDate 2022
dc.date.none.fl_str_mv 2022-03-29
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/27938
10.33448/rsd-v11i5.27938
url https://rsdjournal.org/index.php/rsd/article/view/27938
identifier_str_mv 10.33448/rsd-v11i5.27938
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/27938/24331
dc.rights.driver.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Research, Society and Development
publisher.none.fl_str_mv Research, Society and Development
dc.source.none.fl_str_mv Research, Society and Development; Vol. 11 No. 5; e6511527938
Research, Society and Development; Vol. 11 Núm. 5; e6511527938
Research, Society and Development; v. 11 n. 5; e6511527938
2525-3409
reponame:Research, Society and Development
instname:Universidade Federal de Itajubá (UNIFEI)
instacron:UNIFEI
instname_str Universidade Federal de Itajubá (UNIFEI)
instacron_str UNIFEI
institution UNIFEI
reponame_str Research, Society and Development
collection Research, Society and Development
repository.name.fl_str_mv Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)
repository.mail.fl_str_mv rsd.articles@gmail.com
_version_ 1797052764421881856