The application of Models Portability to predict undergraduate students’ performance by using Transfer Learning
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Research, Society and Development |
Texto Completo: | https://rsdjournal.org/index.php/rsd/article/view/27938 |
Resumo: | One of the great challenges of education in recent years has been to accurately and reliably predict students’ performance in order to apply different strategies in order to help them with their academic deficiencies. Based on this fact, the main goal of this work is to apply a Transfer Learning approach on Learning Management Systems logs (i.e., Moodle) in order to achieve good portability of models and then predict the performance of undergraduate students. Two different scenarios have been implemented considering the activities of each course used in Moodle, the group of similar courses of the same degree as the first scenario and the group of a similar level of usage of activities as the second one. Empirical analysis has been conducted in order to evaluate the performance of the models created with three well-known classification algorithms (i.e., Decision Tree, Random Forest and Naive Bayes). AUC ROC, F-Measure, Precision and Recall have been applied as prediction measures for choosing the best models and evaluating their portability performance to the other courses. Even in the early stage, the experimental results encourage us to state that it is possible to apply transfer predictive models to the same group of courses in the majority of the cases. |
id |
UNIFEI_418938276f27818a24ad873710473665 |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/27938 |
network_acronym_str |
UNIFEI |
network_name_str |
Research, Society and Development |
repository_id_str |
|
spelling |
The application of Models Portability to predict undergraduate students’ performance by using Transfer LearningAplicación de Portabilidad de Modelos para predicción de desempeño de estudiantes de pregrado usando Transferencia de AprendizajeAplicação de Portabilidade de Modelos para predição de desempenho de estudantes de graduação usando Transfer LearningTransfer LearningMachine LearningStudent PerformanceMoodle.Transferencia de AprendizajeAprendizaje AutomáticoRendimiento EstudiantilMoodle.Transferência de AprendizadoAprendizado de MáquinaDesempenho do alunoMoodle.One of the great challenges of education in recent years has been to accurately and reliably predict students’ performance in order to apply different strategies in order to help them with their academic deficiencies. Based on this fact, the main goal of this work is to apply a Transfer Learning approach on Learning Management Systems logs (i.e., Moodle) in order to achieve good portability of models and then predict the performance of undergraduate students. Two different scenarios have been implemented considering the activities of each course used in Moodle, the group of similar courses of the same degree as the first scenario and the group of a similar level of usage of activities as the second one. Empirical analysis has been conducted in order to evaluate the performance of the models created with three well-known classification algorithms (i.e., Decision Tree, Random Forest and Naive Bayes). AUC ROC, F-Measure, Precision and Recall have been applied as prediction measures for choosing the best models and evaluating their portability performance to the other courses. Even in the early stage, the experimental results encourage us to state that it is possible to apply transfer predictive models to the same group of courses in the majority of the cases.Uno de los grandes retos de la educación en los últimos años ha sido predecir con precisión y fiabilidad el rendimiento de los alumnos para poder aplicar distintas estrategias que les ayuden a afrontar sus deficiencias académicas. Basado en este hecho, el objetivo principal de este trabajo es aplicar un enfoque de transferencia de aprendizaje en los registros del sistema de gestión de aprendizaje (i.e., Moodle) para obtener una buena portabilidad del modelo y, con eso, predecir el rendimiento de los estudiantes de pregrado. Se implementaron dos escenarios diferentes considerando las actividades de cada curso utilizado en Moodle, el primer escenario, con el grupo de cursos similares de la misma especialidad, y el segundo escenario, con el grupo de niveles de uso de actividades. Se realizó un análisis empírico para evaluar el rendimiento de los modelos creados con tres algoritmos de clasificación bien conocidos (i.e., Árbol de Decisión, Bosque Aleatorio y Naive Bayes). Además, las métricas AUC ROC, F-Measure, Precision y Recall se utilizaron como medidas predictivas para elegir los mejores modelos y evaluar su rendimiento de portabilidad a los otros cursos. Los resultados experimentales nos animan a afirmar que es posible aplicar la transferencia de modelos predictivos a un mismo grupo de cursos en la mayoría de los casos.Um dos grandes desafios da educação nos últimos anos tem sido prever com precisão e confiabilidade o desempenho dos alunos a fim de aplicar diferentes estratégias para ajudá-los em suas deficiências acadêmicas. Com base neste fato, o objetivo principal deste trabalho é aplicar uma abordagem de Transferência de Aprendizagem em logs de Sistemas de Gestão de Aprendizagem (i.e., Moodle) a fim de obter uma boa portabilidade de modelos e, com isso, prever o desempenho dos alunos de graduação. Dois cenários diferentes foram implementados considerando as atividades de cada curso utilizado no Moodle, o primeiro cenário, com o grupo de cursos similares de mesma graduação, e o segundo cenário, com o grupo de níveis de utilização de atividades. A análise empírica foi realizada para avaliar o desempenho dos modelos criados com três algoritmos de classificação bem conhecidos (i.e., Árvore de Decisão, Random Forest e Naive Bayes). Além disso, as métricas AUC ROC, F-Measure, Precision e Recall foram usadas como medidas de predição para escolher os melhores modelos e avaliar seu desempenho de portabilidade para os demais cursos. Os resultados experimentais nos encorajam a afirmar que é possível aplicar a transferência de modelos preditivos para o mesmo grupo de cursos na maioria dos casos.Research, Society and Development2022-03-29info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/2793810.33448/rsd-v11i5.27938Research, Society and Development; Vol. 11 No. 5; e6511527938Research, Society and Development; Vol. 11 Núm. 5; e6511527938Research, Society and Development; v. 11 n. 5; e65115279382525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIenghttps://rsdjournal.org/index.php/rsd/article/view/27938/24331Copyright (c) 2022 Carlos Antonio R. Beltran; João Carlos Xavier Júnior; Cephas Alves da Silveira Barreto; Arthur Costa Gorgônio; Song Jong Márcio Simioni da Costahttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessBeltran, Carlos Antonio R. Xavier Júnior, João Carlos Barreto, Cephas Alves da SilveiraGorgônio, Arthur CostaCosta, Song Jong Márcio Simioni da 2022-04-17T18:18:56Zoai:ojs.pkp.sfu.ca:article/27938Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:45:30.838470Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false |
dc.title.none.fl_str_mv |
The application of Models Portability to predict undergraduate students’ performance by using Transfer Learning Aplicación de Portabilidad de Modelos para predicción de desempeño de estudiantes de pregrado usando Transferencia de Aprendizaje Aplicação de Portabilidade de Modelos para predição de desempenho de estudantes de graduação usando Transfer Learning |
title |
The application of Models Portability to predict undergraduate students’ performance by using Transfer Learning |
spellingShingle |
The application of Models Portability to predict undergraduate students’ performance by using Transfer Learning Beltran, Carlos Antonio R. Transfer Learning Machine Learning Student Performance Moodle. Transferencia de Aprendizaje Aprendizaje Automático Rendimiento Estudiantil Moodle. Transferência de Aprendizado Aprendizado de Máquina Desempenho do aluno Moodle. |
title_short |
The application of Models Portability to predict undergraduate students’ performance by using Transfer Learning |
title_full |
The application of Models Portability to predict undergraduate students’ performance by using Transfer Learning |
title_fullStr |
The application of Models Portability to predict undergraduate students’ performance by using Transfer Learning |
title_full_unstemmed |
The application of Models Portability to predict undergraduate students’ performance by using Transfer Learning |
title_sort |
The application of Models Portability to predict undergraduate students’ performance by using Transfer Learning |
author |
Beltran, Carlos Antonio R. |
author_facet |
Beltran, Carlos Antonio R. Xavier Júnior, João Carlos Barreto, Cephas Alves da Silveira Gorgônio, Arthur Costa Costa, Song Jong Márcio Simioni da |
author_role |
author |
author2 |
Xavier Júnior, João Carlos Barreto, Cephas Alves da Silveira Gorgônio, Arthur Costa Costa, Song Jong Márcio Simioni da |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Beltran, Carlos Antonio R. Xavier Júnior, João Carlos Barreto, Cephas Alves da Silveira Gorgônio, Arthur Costa Costa, Song Jong Márcio Simioni da |
dc.subject.por.fl_str_mv |
Transfer Learning Machine Learning Student Performance Moodle. Transferencia de Aprendizaje Aprendizaje Automático Rendimiento Estudiantil Moodle. Transferência de Aprendizado Aprendizado de Máquina Desempenho do aluno Moodle. |
topic |
Transfer Learning Machine Learning Student Performance Moodle. Transferencia de Aprendizaje Aprendizaje Automático Rendimiento Estudiantil Moodle. Transferência de Aprendizado Aprendizado de Máquina Desempenho do aluno Moodle. |
description |
One of the great challenges of education in recent years has been to accurately and reliably predict students’ performance in order to apply different strategies in order to help them with their academic deficiencies. Based on this fact, the main goal of this work is to apply a Transfer Learning approach on Learning Management Systems logs (i.e., Moodle) in order to achieve good portability of models and then predict the performance of undergraduate students. Two different scenarios have been implemented considering the activities of each course used in Moodle, the group of similar courses of the same degree as the first scenario and the group of a similar level of usage of activities as the second one. Empirical analysis has been conducted in order to evaluate the performance of the models created with three well-known classification algorithms (i.e., Decision Tree, Random Forest and Naive Bayes). AUC ROC, F-Measure, Precision and Recall have been applied as prediction measures for choosing the best models and evaluating their portability performance to the other courses. Even in the early stage, the experimental results encourage us to state that it is possible to apply transfer predictive models to the same group of courses in the majority of the cases. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-03-29 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/27938 10.33448/rsd-v11i5.27938 |
url |
https://rsdjournal.org/index.php/rsd/article/view/27938 |
identifier_str_mv |
10.33448/rsd-v11i5.27938 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/27938/24331 |
dc.rights.driver.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Research, Society and Development |
publisher.none.fl_str_mv |
Research, Society and Development |
dc.source.none.fl_str_mv |
Research, Society and Development; Vol. 11 No. 5; e6511527938 Research, Society and Development; Vol. 11 Núm. 5; e6511527938 Research, Society and Development; v. 11 n. 5; e6511527938 2525-3409 reponame:Research, Society and Development instname:Universidade Federal de Itajubá (UNIFEI) instacron:UNIFEI |
instname_str |
Universidade Federal de Itajubá (UNIFEI) |
instacron_str |
UNIFEI |
institution |
UNIFEI |
reponame_str |
Research, Society and Development |
collection |
Research, Society and Development |
repository.name.fl_str_mv |
Research, Society and Development - Universidade Federal de Itajubá (UNIFEI) |
repository.mail.fl_str_mv |
rsd.articles@gmail.com |
_version_ |
1797052764421881856 |