Comparison of classic and Bayesian model for data on perinatal deaths at ISEA, Campina Grande-PB

Detalhes bibliográficos
Autor(a) principal: Albuquerque, Mácio Augusto de
Data de Publicação: 2020
Outros Autores: Lucena, Sandro Lins Lopes de, Barros, Kleber Napoleão Nunes de Oliveira
Tipo de documento: Artigo
Idioma: por
Título da fonte: Research, Society and Development
Texto Completo: https://rsdjournal.org/index.php/rsd/article/view/5477
Resumo: Generalized linear models are useful, among other situations, when you want to fit models to data that do not follow normality and cannot be adjusted using only simple linear regression. Another powerful estimation tool is the Bayesian methods, based on conditional probabilities. This work presents an adjustment of logistic regression models with parameters estimated by the maximum likelihood method, which is updated using Bayesian inference techniques. Such methods were applied to data obtained at the Instituto de Saúde Elpídio de Almeida, which is located in the city of Campina Grande - PB. The information refers to pregnant patients seen at this health unit. The objective was to obtain the best possible model that provides us with information about the chance of death of a child due to maternal variables using the maximum likelihood estimation method and the Bayesian method. The adjustments and diagnostics of the models were performed with the aid of the R software. It was found that the model estimated by the maximum likelihood is very close to the Bayesian model.
id UNIFEI_43b3b08d18c73e13aea08a8ede5faa62
oai_identifier_str oai:ojs.pkp.sfu.ca:article/5477
network_acronym_str UNIFEI
network_name_str Research, Society and Development
repository_id_str
spelling Comparison of classic and Bayesian model for data on perinatal deaths at ISEA, Campina Grande-PBComparación del modelo clásico y bayesiano para datos sobre muertes perinatales en ISEA, Campina Grande-PBComparação de modelo clássico e Bayesiano para dados de óbitos perinatais no ISEA, Campina Grande-PBLogistic regressionBayesian inferencePerinatal death.Regresión logísticaInferencia bayesianaMuerte perinatal.Regressão logísticaInferência BayesianaÓbito perinatal.Generalized linear models are useful, among other situations, when you want to fit models to data that do not follow normality and cannot be adjusted using only simple linear regression. Another powerful estimation tool is the Bayesian methods, based on conditional probabilities. This work presents an adjustment of logistic regression models with parameters estimated by the maximum likelihood method, which is updated using Bayesian inference techniques. Such methods were applied to data obtained at the Instituto de Saúde Elpídio de Almeida, which is located in the city of Campina Grande - PB. The information refers to pregnant patients seen at this health unit. The objective was to obtain the best possible model that provides us with information about the chance of death of a child due to maternal variables using the maximum likelihood estimation method and the Bayesian method. The adjustments and diagnostics of the models were performed with the aid of the R software. It was found that the model estimated by the maximum likelihood is very close to the Bayesian model.Los modelos lineales generalizados sonútiles, entre otrassituaciones, cuandodesea ajustar modelos a datos que no siguenlanormalidad y no puedenajustarse utilizando solo una regresión lineal simple. Otra poderosa herramienta de estimaciónsonlos métodos bayesianos, basados en probabilidades condicionales. Este trabajo presenta un ajuste de modelos de regresión logística conparámetros estimados por el método de máxima verosimilitud, que se actualiza utilizando técnicas de inferencia bayesianas. Dichos métodos se aplicaron a losdatosobtenidosenel Instituto de Saúde Elpídio de Almeida, ubicadoenlaciudad de Campina Grande - PB. La información se refiere a pacientes embarazadas atendidas en esta unidad de salud. El objetivo fueobtenerelmejor modelo posible que nos brindeinformación sobre laposibilidad de muerte de unniñodebido a variables maternas utilizando el método de estimación de máxima verosimilitud y el método bayesiano. Los ajustes y diagnósticos de los modelos se llevaron a cabo conlaayudadel software R. Se encontró que el modelo estimado por la máxima probabilidad está muy cerca del modelo bayesiano.Modelos lineares generalizados são úteis, dentre outras situações, quando se quer ajustar modelos a dados que não seguem normalidade e não podem ser ajustados usando apenas a regressão linear simples. Outra ferramenta poderosa de estimação são os métodos Bayesianos, baseado em probabilidades condicionais. Neste trabalho apresenta-se um ajuste de modelos de regressão logístico com parâmetros estimado pelo método da máxima verossimilhança que é atualizado usando as técnicas da inferência Bayesiana. Tais métodos foram aplicados em dados obtidos no Instituto de Saúde Elpídio de Almeida que fica localizado no município de Campina Grande - PB. As informações referem-se a pacientes gestantes atendidas nesta unidade de saúde. Objetivou-se obter o melhor modelo possível que nos forneça informação sobre a chance de óbito de uma criança em função de variáveis maternas usando o método de estimação da máxima verossimilhança e o método Bayesiano. Os ajustes e diagnósticos dos modelos foram realizados com auxílio do software R. Contatou-se que o modelo estimado pela máxima verossimilhança é muito próximo do modelo Bayesiano.Research, Society and Development2020-07-18info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/547710.33448/rsd-v9i8.5477Research, Society and Development; Vol. 9 No. 8; e464985477Research, Society and Development; Vol. 9 Núm. 8; e464985477Research, Society and Development; v. 9 n. 8; e4649854772525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIporhttps://rsdjournal.org/index.php/rsd/article/view/5477/5048Copyright (c) 2020 Mácio Augusto Albuquerque, Sandro Lins Lopes de Lucena, Kleber Napoleão Nunes de Oliveira Barrosinfo:eu-repo/semantics/openAccessAlbuquerque, Mácio Augusto deLucena, Sandro Lins Lopes deBarros, Kleber Napoleão Nunes de Oliveira2020-08-20T18:00:17Zoai:ojs.pkp.sfu.ca:article/5477Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:28:59.104789Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false
dc.title.none.fl_str_mv Comparison of classic and Bayesian model for data on perinatal deaths at ISEA, Campina Grande-PB
Comparación del modelo clásico y bayesiano para datos sobre muertes perinatales en ISEA, Campina Grande-PB
Comparação de modelo clássico e Bayesiano para dados de óbitos perinatais no ISEA, Campina Grande-PB
title Comparison of classic and Bayesian model for data on perinatal deaths at ISEA, Campina Grande-PB
spellingShingle Comparison of classic and Bayesian model for data on perinatal deaths at ISEA, Campina Grande-PB
Albuquerque, Mácio Augusto de
Logistic regression
Bayesian inference
Perinatal death.
Regresión logística
Inferencia bayesiana
Muerte perinatal.
Regressão logística
Inferência Bayesiana
Óbito perinatal.
title_short Comparison of classic and Bayesian model for data on perinatal deaths at ISEA, Campina Grande-PB
title_full Comparison of classic and Bayesian model for data on perinatal deaths at ISEA, Campina Grande-PB
title_fullStr Comparison of classic and Bayesian model for data on perinatal deaths at ISEA, Campina Grande-PB
title_full_unstemmed Comparison of classic and Bayesian model for data on perinatal deaths at ISEA, Campina Grande-PB
title_sort Comparison of classic and Bayesian model for data on perinatal deaths at ISEA, Campina Grande-PB
author Albuquerque, Mácio Augusto de
author_facet Albuquerque, Mácio Augusto de
Lucena, Sandro Lins Lopes de
Barros, Kleber Napoleão Nunes de Oliveira
author_role author
author2 Lucena, Sandro Lins Lopes de
Barros, Kleber Napoleão Nunes de Oliveira
author2_role author
author
dc.contributor.author.fl_str_mv Albuquerque, Mácio Augusto de
Lucena, Sandro Lins Lopes de
Barros, Kleber Napoleão Nunes de Oliveira
dc.subject.por.fl_str_mv Logistic regression
Bayesian inference
Perinatal death.
Regresión logística
Inferencia bayesiana
Muerte perinatal.
Regressão logística
Inferência Bayesiana
Óbito perinatal.
topic Logistic regression
Bayesian inference
Perinatal death.
Regresión logística
Inferencia bayesiana
Muerte perinatal.
Regressão logística
Inferência Bayesiana
Óbito perinatal.
description Generalized linear models are useful, among other situations, when you want to fit models to data that do not follow normality and cannot be adjusted using only simple linear regression. Another powerful estimation tool is the Bayesian methods, based on conditional probabilities. This work presents an adjustment of logistic regression models with parameters estimated by the maximum likelihood method, which is updated using Bayesian inference techniques. Such methods were applied to data obtained at the Instituto de Saúde Elpídio de Almeida, which is located in the city of Campina Grande - PB. The information refers to pregnant patients seen at this health unit. The objective was to obtain the best possible model that provides us with information about the chance of death of a child due to maternal variables using the maximum likelihood estimation method and the Bayesian method. The adjustments and diagnostics of the models were performed with the aid of the R software. It was found that the model estimated by the maximum likelihood is very close to the Bayesian model.
publishDate 2020
dc.date.none.fl_str_mv 2020-07-18
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/5477
10.33448/rsd-v9i8.5477
url https://rsdjournal.org/index.php/rsd/article/view/5477
identifier_str_mv 10.33448/rsd-v9i8.5477
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/5477/5048
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Research, Society and Development
publisher.none.fl_str_mv Research, Society and Development
dc.source.none.fl_str_mv Research, Society and Development; Vol. 9 No. 8; e464985477
Research, Society and Development; Vol. 9 Núm. 8; e464985477
Research, Society and Development; v. 9 n. 8; e464985477
2525-3409
reponame:Research, Society and Development
instname:Universidade Federal de Itajubá (UNIFEI)
instacron:UNIFEI
instname_str Universidade Federal de Itajubá (UNIFEI)
instacron_str UNIFEI
institution UNIFEI
reponame_str Research, Society and Development
collection Research, Society and Development
repository.name.fl_str_mv Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)
repository.mail.fl_str_mv rsd.articles@gmail.com
_version_ 1797052737154711552