Comparison of classic and Bayesian model for data on perinatal deaths at ISEA, Campina Grande-PB
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Research, Society and Development |
Texto Completo: | https://rsdjournal.org/index.php/rsd/article/view/5477 |
Resumo: | Generalized linear models are useful, among other situations, when you want to fit models to data that do not follow normality and cannot be adjusted using only simple linear regression. Another powerful estimation tool is the Bayesian methods, based on conditional probabilities. This work presents an adjustment of logistic regression models with parameters estimated by the maximum likelihood method, which is updated using Bayesian inference techniques. Such methods were applied to data obtained at the Instituto de Saúde Elpídio de Almeida, which is located in the city of Campina Grande - PB. The information refers to pregnant patients seen at this health unit. The objective was to obtain the best possible model that provides us with information about the chance of death of a child due to maternal variables using the maximum likelihood estimation method and the Bayesian method. The adjustments and diagnostics of the models were performed with the aid of the R software. It was found that the model estimated by the maximum likelihood is very close to the Bayesian model. |
id |
UNIFEI_43b3b08d18c73e13aea08a8ede5faa62 |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/5477 |
network_acronym_str |
UNIFEI |
network_name_str |
Research, Society and Development |
repository_id_str |
|
spelling |
Comparison of classic and Bayesian model for data on perinatal deaths at ISEA, Campina Grande-PBComparación del modelo clásico y bayesiano para datos sobre muertes perinatales en ISEA, Campina Grande-PBComparação de modelo clássico e Bayesiano para dados de óbitos perinatais no ISEA, Campina Grande-PBLogistic regressionBayesian inferencePerinatal death.Regresión logísticaInferencia bayesianaMuerte perinatal.Regressão logísticaInferência BayesianaÓbito perinatal.Generalized linear models are useful, among other situations, when you want to fit models to data that do not follow normality and cannot be adjusted using only simple linear regression. Another powerful estimation tool is the Bayesian methods, based on conditional probabilities. This work presents an adjustment of logistic regression models with parameters estimated by the maximum likelihood method, which is updated using Bayesian inference techniques. Such methods were applied to data obtained at the Instituto de Saúde Elpídio de Almeida, which is located in the city of Campina Grande - PB. The information refers to pregnant patients seen at this health unit. The objective was to obtain the best possible model that provides us with information about the chance of death of a child due to maternal variables using the maximum likelihood estimation method and the Bayesian method. The adjustments and diagnostics of the models were performed with the aid of the R software. It was found that the model estimated by the maximum likelihood is very close to the Bayesian model.Los modelos lineales generalizados sonútiles, entre otrassituaciones, cuandodesea ajustar modelos a datos que no siguenlanormalidad y no puedenajustarse utilizando solo una regresión lineal simple. Otra poderosa herramienta de estimaciónsonlos métodos bayesianos, basados en probabilidades condicionales. Este trabajo presenta un ajuste de modelos de regresión logística conparámetros estimados por el método de máxima verosimilitud, que se actualiza utilizando técnicas de inferencia bayesianas. Dichos métodos se aplicaron a losdatosobtenidosenel Instituto de Saúde Elpídio de Almeida, ubicadoenlaciudad de Campina Grande - PB. La información se refiere a pacientes embarazadas atendidas en esta unidad de salud. El objetivo fueobtenerelmejor modelo posible que nos brindeinformación sobre laposibilidad de muerte de unniñodebido a variables maternas utilizando el método de estimación de máxima verosimilitud y el método bayesiano. Los ajustes y diagnósticos de los modelos se llevaron a cabo conlaayudadel software R. Se encontró que el modelo estimado por la máxima probabilidad está muy cerca del modelo bayesiano.Modelos lineares generalizados são úteis, dentre outras situações, quando se quer ajustar modelos a dados que não seguem normalidade e não podem ser ajustados usando apenas a regressão linear simples. Outra ferramenta poderosa de estimação são os métodos Bayesianos, baseado em probabilidades condicionais. Neste trabalho apresenta-se um ajuste de modelos de regressão logístico com parâmetros estimado pelo método da máxima verossimilhança que é atualizado usando as técnicas da inferência Bayesiana. Tais métodos foram aplicados em dados obtidos no Instituto de Saúde Elpídio de Almeida que fica localizado no município de Campina Grande - PB. As informações referem-se a pacientes gestantes atendidas nesta unidade de saúde. Objetivou-se obter o melhor modelo possível que nos forneça informação sobre a chance de óbito de uma criança em função de variáveis maternas usando o método de estimação da máxima verossimilhança e o método Bayesiano. Os ajustes e diagnósticos dos modelos foram realizados com auxílio do software R. Contatou-se que o modelo estimado pela máxima verossimilhança é muito próximo do modelo Bayesiano.Research, Society and Development2020-07-18info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/547710.33448/rsd-v9i8.5477Research, Society and Development; Vol. 9 No. 8; e464985477Research, Society and Development; Vol. 9 Núm. 8; e464985477Research, Society and Development; v. 9 n. 8; e4649854772525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIporhttps://rsdjournal.org/index.php/rsd/article/view/5477/5048Copyright (c) 2020 Mácio Augusto Albuquerque, Sandro Lins Lopes de Lucena, Kleber Napoleão Nunes de Oliveira Barrosinfo:eu-repo/semantics/openAccessAlbuquerque, Mácio Augusto deLucena, Sandro Lins Lopes deBarros, Kleber Napoleão Nunes de Oliveira2020-08-20T18:00:17Zoai:ojs.pkp.sfu.ca:article/5477Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:28:59.104789Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false |
dc.title.none.fl_str_mv |
Comparison of classic and Bayesian model for data on perinatal deaths at ISEA, Campina Grande-PB Comparación del modelo clásico y bayesiano para datos sobre muertes perinatales en ISEA, Campina Grande-PB Comparação de modelo clássico e Bayesiano para dados de óbitos perinatais no ISEA, Campina Grande-PB |
title |
Comparison of classic and Bayesian model for data on perinatal deaths at ISEA, Campina Grande-PB |
spellingShingle |
Comparison of classic and Bayesian model for data on perinatal deaths at ISEA, Campina Grande-PB Albuquerque, Mácio Augusto de Logistic regression Bayesian inference Perinatal death. Regresión logística Inferencia bayesiana Muerte perinatal. Regressão logística Inferência Bayesiana Óbito perinatal. |
title_short |
Comparison of classic and Bayesian model for data on perinatal deaths at ISEA, Campina Grande-PB |
title_full |
Comparison of classic and Bayesian model for data on perinatal deaths at ISEA, Campina Grande-PB |
title_fullStr |
Comparison of classic and Bayesian model for data on perinatal deaths at ISEA, Campina Grande-PB |
title_full_unstemmed |
Comparison of classic and Bayesian model for data on perinatal deaths at ISEA, Campina Grande-PB |
title_sort |
Comparison of classic and Bayesian model for data on perinatal deaths at ISEA, Campina Grande-PB |
author |
Albuquerque, Mácio Augusto de |
author_facet |
Albuquerque, Mácio Augusto de Lucena, Sandro Lins Lopes de Barros, Kleber Napoleão Nunes de Oliveira |
author_role |
author |
author2 |
Lucena, Sandro Lins Lopes de Barros, Kleber Napoleão Nunes de Oliveira |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Albuquerque, Mácio Augusto de Lucena, Sandro Lins Lopes de Barros, Kleber Napoleão Nunes de Oliveira |
dc.subject.por.fl_str_mv |
Logistic regression Bayesian inference Perinatal death. Regresión logística Inferencia bayesiana Muerte perinatal. Regressão logística Inferência Bayesiana Óbito perinatal. |
topic |
Logistic regression Bayesian inference Perinatal death. Regresión logística Inferencia bayesiana Muerte perinatal. Regressão logística Inferência Bayesiana Óbito perinatal. |
description |
Generalized linear models are useful, among other situations, when you want to fit models to data that do not follow normality and cannot be adjusted using only simple linear regression. Another powerful estimation tool is the Bayesian methods, based on conditional probabilities. This work presents an adjustment of logistic regression models with parameters estimated by the maximum likelihood method, which is updated using Bayesian inference techniques. Such methods were applied to data obtained at the Instituto de Saúde Elpídio de Almeida, which is located in the city of Campina Grande - PB. The information refers to pregnant patients seen at this health unit. The objective was to obtain the best possible model that provides us with information about the chance of death of a child due to maternal variables using the maximum likelihood estimation method and the Bayesian method. The adjustments and diagnostics of the models were performed with the aid of the R software. It was found that the model estimated by the maximum likelihood is very close to the Bayesian model. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-07-18 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/5477 10.33448/rsd-v9i8.5477 |
url |
https://rsdjournal.org/index.php/rsd/article/view/5477 |
identifier_str_mv |
10.33448/rsd-v9i8.5477 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/5477/5048 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Research, Society and Development |
publisher.none.fl_str_mv |
Research, Society and Development |
dc.source.none.fl_str_mv |
Research, Society and Development; Vol. 9 No. 8; e464985477 Research, Society and Development; Vol. 9 Núm. 8; e464985477 Research, Society and Development; v. 9 n. 8; e464985477 2525-3409 reponame:Research, Society and Development instname:Universidade Federal de Itajubá (UNIFEI) instacron:UNIFEI |
instname_str |
Universidade Federal de Itajubá (UNIFEI) |
instacron_str |
UNIFEI |
institution |
UNIFEI |
reponame_str |
Research, Society and Development |
collection |
Research, Society and Development |
repository.name.fl_str_mv |
Research, Society and Development - Universidade Federal de Itajubá (UNIFEI) |
repository.mail.fl_str_mv |
rsd.articles@gmail.com |
_version_ |
1797052737154711552 |