Machine learning and automatic selection of attributes for the identification of Chagas disease from clinical and sociodemographic data
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Research, Society and Development |
DOI: | 10.33448/rsd-v10i4.13879 |
Texto Completo: | https://rsdjournal.org/index.php/rsd/article/view/13879 |
Resumo: | Objective: evaluate the potential use of machine learning and the automatic selection of attributes in discrimination of individuals with and without Chagas disease based on clinical and sociodemographic data. Method: After the evaluation of many learning algorithms, they have been chosen and the comparison between neural network Multilayer Perceptron (MLP) and the Linear Regression (LR) was done, seeking which one presents the best performance for prediction of the Chagas disease diagnosis, being used the criteria of sensitivity, specificity, accuracy and area under the ROC curve (AUC). Generated models were also compared, using the methods of automatic selection of attributes: Forward Selection, Backward Elimination and genetic algorithm. Results: The best results were achieved using the genetic algorithm and the MLP presented accuracy of 95.95%, 78.30% sensitivity, and specificity of 75.00% and AUC of 0.861. Conclusion: It was proved to be a very interesting performance, given the nature of the data used for sorting and use in public health, glimpsing its relevance in the medical field, enabling an approximation of prevalence that justifies the actions of active search of individuals Chagas disease patients for treatment and prevention. |
id |
UNIFEI_45ad5511280a3461c7855a119a3d67d6 |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/13879 |
network_acronym_str |
UNIFEI |
network_name_str |
Research, Society and Development |
spelling |
Machine learning and automatic selection of attributes for the identification of Chagas disease from clinical and sociodemographic dataAprendizaje y selección automáticos de atributos para la identificación de la enfermedad de Chagas a partir de datos clínicos y sociodemográficosAprendizado de máquina e seleção automática de atributos para identificação da doença de Chagas a partir de dados clínicos e sociodemográficosAprendizado de máquinaRede neuralDoença de Chagas.Aprendizaje automáticoRed neuronalLa enfermedad de Chagas.Machine learningNeural networkChagas disease.Objective: evaluate the potential use of machine learning and the automatic selection of attributes in discrimination of individuals with and without Chagas disease based on clinical and sociodemographic data. Method: After the evaluation of many learning algorithms, they have been chosen and the comparison between neural network Multilayer Perceptron (MLP) and the Linear Regression (LR) was done, seeking which one presents the best performance for prediction of the Chagas disease diagnosis, being used the criteria of sensitivity, specificity, accuracy and area under the ROC curve (AUC). Generated models were also compared, using the methods of automatic selection of attributes: Forward Selection, Backward Elimination and genetic algorithm. Results: The best results were achieved using the genetic algorithm and the MLP presented accuracy of 95.95%, 78.30% sensitivity, and specificity of 75.00% and AUC of 0.861. Conclusion: It was proved to be a very interesting performance, given the nature of the data used for sorting and use in public health, glimpsing its relevance in the medical field, enabling an approximation of prevalence that justifies the actions of active search of individuals Chagas disease patients for treatment and prevention.Objetivo: comparar el potencial del uso del aprendizaje automático y la selección automática de atributos en la discriminación de individuos chagásicos y no chagásicos en base a datos clínicos y sociodemográficos. Metodología: después de la evaluación de varios algoritmos de aprendizaje, se eligió y realizó la comparación entre el Perceptrón Neural Multicapa (MLP) y la Regresión Lineal (LR), buscando cuál presenta el mejor desempeño para predecir el diagnóstico de la enfermedad de Chagas, los criterios de sensibilidad, especificidad, precisión y área se utilizaron bajo la curva de características operativas del receptor (curva ROC). También se compararon los modelos generados mediante métodos automáticos de selección de atributos: Selección hacia adelante, Eliminación hacia atrás y Algoritmo genético. Resultados: los resultados con mayor grado de confiabilidad se obtuvieron mediante el uso del Algoritmo Genético con el MLP, el cual presentó precisión del 95,95%, sensibilidad del 78,30%, especificidad del 75,00% y Precisión (AUC) de 0,861. Conclusión: Lo que resultó ser un desempeño relevante dada la naturaleza de los datos utilizados para la clasificación y uso en salud pública, vislumbrando su relevancia en el campo médico, permitiendo una aproximación de la prevalencia que justifica acciones de búsqueda activa de individuos chagásicos para su tratamiento y prevención.Objetivo: avaliar o potencial de uso do aprendizado de máquina e da seleção automática de atributos na discriminação de indivíduos com e sem doença de Chagas a partir de dados clínicos e sociodemográficos. Método: Após a avaliação de diversos algoritmos de aprendizagem, eles foram escolhidos e foi feita a comparação entre a rede neural Multilayer Perceptron (MLP) e a Regressão Linear (LR), buscando qual apresentasse o melhor desempenho para predição do diagnóstico da doença de Chagas, sendo utilizados os critérios de sensibilidade, especificidade, acurácia e área sob a curva ROC (AUC). Os modelos gerados também foram comparados, utilizando os métodos de seleção automática de atributos: Forward Selection, Backward Elimination e algoritmo genético. Resultados: Os melhores resultados foram obtidos com o algoritmo genético e o MLP apresentou acurácia de 95,95%, sensibilidade de 78,30%, especificidade de 75,00% e AUC de 0,861. Conclusão: Mostrou-se um desempenho bastante interessante, dada a natureza dos dados utilizados para triagem e utilização em saúde coletiva, vislumbrando sua relevância na área médica, possibilitando uma aproximação de prevalências que justifiquem as ações de busca ativa de indivíduos Chagas pacientes com doenças para tratamento e prevenção.Research, Society and Development2021-04-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/1387910.33448/rsd-v10i4.13879Research, Society and Development; Vol. 10 No. 4; e19310413879Research, Society and Development; Vol. 10 Núm. 4; e19310413879Research, Society and Development; v. 10 n. 4; e193104138792525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIenghttps://rsdjournal.org/index.php/rsd/article/view/13879/12579Copyright (c) 2021 Weber de Santana Teles; Aydano Pamponet Machado; Paulo Celso Curvelo Cantos Júnior; Cláudia Moura de Melo; Maria Hozana Santos Silva; Rute Nascimento da Silva; Veronica de Lourdes Sierpe Jeraldohttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessTeles, Weber de Santana Machado, Aydano Pamponet Cantos Júnior, Paulo Celso Curvelo Melo, Cláudia Moura de Silva, Maria Hozana Santos Silva, Rute Nascimento da Jeraldo, Veronica de Lourdes Sierpe 2021-04-25T11:21:26Zoai:ojs.pkp.sfu.ca:article/13879Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:35:07.848556Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false |
dc.title.none.fl_str_mv |
Machine learning and automatic selection of attributes for the identification of Chagas disease from clinical and sociodemographic data Aprendizaje y selección automáticos de atributos para la identificación de la enfermedad de Chagas a partir de datos clínicos y sociodemográficos Aprendizado de máquina e seleção automática de atributos para identificação da doença de Chagas a partir de dados clínicos e sociodemográficos |
title |
Machine learning and automatic selection of attributes for the identification of Chagas disease from clinical and sociodemographic data |
spellingShingle |
Machine learning and automatic selection of attributes for the identification of Chagas disease from clinical and sociodemographic data Machine learning and automatic selection of attributes for the identification of Chagas disease from clinical and sociodemographic data Teles, Weber de Santana Aprendizado de máquina Rede neural Doença de Chagas. Aprendizaje automático Red neuronal La enfermedad de Chagas. Machine learning Neural network Chagas disease. Teles, Weber de Santana Aprendizado de máquina Rede neural Doença de Chagas. Aprendizaje automático Red neuronal La enfermedad de Chagas. Machine learning Neural network Chagas disease. |
title_short |
Machine learning and automatic selection of attributes for the identification of Chagas disease from clinical and sociodemographic data |
title_full |
Machine learning and automatic selection of attributes for the identification of Chagas disease from clinical and sociodemographic data |
title_fullStr |
Machine learning and automatic selection of attributes for the identification of Chagas disease from clinical and sociodemographic data Machine learning and automatic selection of attributes for the identification of Chagas disease from clinical and sociodemographic data |
title_full_unstemmed |
Machine learning and automatic selection of attributes for the identification of Chagas disease from clinical and sociodemographic data Machine learning and automatic selection of attributes for the identification of Chagas disease from clinical and sociodemographic data |
title_sort |
Machine learning and automatic selection of attributes for the identification of Chagas disease from clinical and sociodemographic data |
author |
Teles, Weber de Santana |
author_facet |
Teles, Weber de Santana Teles, Weber de Santana Machado, Aydano Pamponet Cantos Júnior, Paulo Celso Curvelo Melo, Cláudia Moura de Silva, Maria Hozana Santos Silva, Rute Nascimento da Jeraldo, Veronica de Lourdes Sierpe Machado, Aydano Pamponet Cantos Júnior, Paulo Celso Curvelo Melo, Cláudia Moura de Silva, Maria Hozana Santos Silva, Rute Nascimento da Jeraldo, Veronica de Lourdes Sierpe |
author_role |
author |
author2 |
Machado, Aydano Pamponet Cantos Júnior, Paulo Celso Curvelo Melo, Cláudia Moura de Silva, Maria Hozana Santos Silva, Rute Nascimento da Jeraldo, Veronica de Lourdes Sierpe |
author2_role |
author author author author author author |
dc.contributor.author.fl_str_mv |
Teles, Weber de Santana Machado, Aydano Pamponet Cantos Júnior, Paulo Celso Curvelo Melo, Cláudia Moura de Silva, Maria Hozana Santos Silva, Rute Nascimento da Jeraldo, Veronica de Lourdes Sierpe |
dc.subject.por.fl_str_mv |
Aprendizado de máquina Rede neural Doença de Chagas. Aprendizaje automático Red neuronal La enfermedad de Chagas. Machine learning Neural network Chagas disease. |
topic |
Aprendizado de máquina Rede neural Doença de Chagas. Aprendizaje automático Red neuronal La enfermedad de Chagas. Machine learning Neural network Chagas disease. |
description |
Objective: evaluate the potential use of machine learning and the automatic selection of attributes in discrimination of individuals with and without Chagas disease based on clinical and sociodemographic data. Method: After the evaluation of many learning algorithms, they have been chosen and the comparison between neural network Multilayer Perceptron (MLP) and the Linear Regression (LR) was done, seeking which one presents the best performance for prediction of the Chagas disease diagnosis, being used the criteria of sensitivity, specificity, accuracy and area under the ROC curve (AUC). Generated models were also compared, using the methods of automatic selection of attributes: Forward Selection, Backward Elimination and genetic algorithm. Results: The best results were achieved using the genetic algorithm and the MLP presented accuracy of 95.95%, 78.30% sensitivity, and specificity of 75.00% and AUC of 0.861. Conclusion: It was proved to be a very interesting performance, given the nature of the data used for sorting and use in public health, glimpsing its relevance in the medical field, enabling an approximation of prevalence that justifies the actions of active search of individuals Chagas disease patients for treatment and prevention. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-04-06 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/13879 10.33448/rsd-v10i4.13879 |
url |
https://rsdjournal.org/index.php/rsd/article/view/13879 |
identifier_str_mv |
10.33448/rsd-v10i4.13879 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/13879/12579 |
dc.rights.driver.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Research, Society and Development |
publisher.none.fl_str_mv |
Research, Society and Development |
dc.source.none.fl_str_mv |
Research, Society and Development; Vol. 10 No. 4; e19310413879 Research, Society and Development; Vol. 10 Núm. 4; e19310413879 Research, Society and Development; v. 10 n. 4; e19310413879 2525-3409 reponame:Research, Society and Development instname:Universidade Federal de Itajubá (UNIFEI) instacron:UNIFEI |
instname_str |
Universidade Federal de Itajubá (UNIFEI) |
instacron_str |
UNIFEI |
institution |
UNIFEI |
reponame_str |
Research, Society and Development |
collection |
Research, Society and Development |
repository.name.fl_str_mv |
Research, Society and Development - Universidade Federal de Itajubá (UNIFEI) |
repository.mail.fl_str_mv |
rsd.articles@gmail.com |
_version_ |
1822178498739961856 |
dc.identifier.doi.none.fl_str_mv |
10.33448/rsd-v10i4.13879 |