Machine learning-driven development of niobium-containing optical glasses

Detalhes bibliográficos
Autor(a) principal: Menezes, Andreia Duarte
Data de Publicação: 2022
Outros Autores: Teixeira, Edilberto Pereira, Finzer, Jose Roberto Delalibera, Oliveira, Rafael Bonacin de
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Research, Society and Development
Texto Completo: https://rsdjournal.org/index.php/rsd/article/view/31290
Resumo: High refractive index glasses are essential for old and new optical systems, such as microscopes, telescopes and novel augmented reality lenses and micro projectors. However, a fair portion of these glasses use toxic components, such as PbO, BaO, As2O3, and TeO2, which lead to high refractive indexes and facilitate the melting operation, but are harmful for human beings and the environment. On the other hand, it is known that niobium significantly increases the refractive index and is a non-toxic element. The objective of this paper was to develop new optical glass compositions containing Nb2O5 with a relatively high refractive index (nd > 1.65), intermediate Abbe number (35 < Vd < 55) and fair glass transition temperature, Tg. To this end, we used a machine learning algorithm titled GLAS, which was recently developed at DEMA-UFSCar to produce new optical glasses composition. After running the algorithm 13 times, two of the most promising compositions were chosen and tested for their glass forming ability and other properties. The best composition was analyzed in respect to the refractive index, glass transition temperature and chemical durability. A comparison between the laboratory results and predictions of the artificial neural network indicates that the GLAS algorithm provides adequate formulations and can be immediately used for accelerating the design of new glasses, substantially reducing the laboratory testing effort. Also, the results indicate that niobium glasses might offer some advantages over its main competitor (La2O3).
id UNIFEI_4c401ef2f0d5f8d69f3e4d3bc7b62001
oai_identifier_str oai:ojs.pkp.sfu.ca:article/31290
network_acronym_str UNIFEI
network_name_str Research, Society and Development
repository_id_str
spelling Machine learning-driven development of niobium-containing optical glasses Dessarrollo de vidrios ópticos conteniendo nióbio mediante machine learningDesenvolvimento de vidros óticos contendo nióbio por machine learningOptical GlassNiobiumRefractive IndexAbbe numberArtificial intelligenceMachine learning.Vidros ÓticosNióbioÍndice de RefraçãoNúmero de AbbeInteligência ArtificialMachine learning.Vidrios ÓpticosNiobioÍndice de Refracción;Número de AbbeInteligencia ArtificialMachine learning.High refractive index glasses are essential for old and new optical systems, such as microscopes, telescopes and novel augmented reality lenses and micro projectors. However, a fair portion of these glasses use toxic components, such as PbO, BaO, As2O3, and TeO2, which lead to high refractive indexes and facilitate the melting operation, but are harmful for human beings and the environment. On the other hand, it is known that niobium significantly increases the refractive index and is a non-toxic element. The objective of this paper was to develop new optical glass compositions containing Nb2O5 with a relatively high refractive index (nd > 1.65), intermediate Abbe number (35 < Vd < 55) and fair glass transition temperature, Tg. To this end, we used a machine learning algorithm titled GLAS, which was recently developed at DEMA-UFSCar to produce new optical glasses composition. After running the algorithm 13 times, two of the most promising compositions were chosen and tested for their glass forming ability and other properties. The best composition was analyzed in respect to the refractive index, glass transition temperature and chemical durability. A comparison between the laboratory results and predictions of the artificial neural network indicates that the GLAS algorithm provides adequate formulations and can be immediately used for accelerating the design of new glasses, substantially reducing the laboratory testing effort. Also, the results indicate that niobium glasses might offer some advantages over its main competitor (La2O3).Vidrios de alto índice de refracción son esenciales para antiguos y nuevos sistemas ópticos, como los microscopios, los telescopios y las nuevas lentes de realidad aumentada y microproyectores. Sin embargo, la mayoría de estos vidrios utilizan componentes tóxicos, como PbO, BaO, As2O3 y TeO2  que llevan a altos índices de refracción y facilitan el proceso de fusión, pero son perjudiciales para el ser humano y para el medio ambiente. Por otro lado, se sabe que el niobio aumenta significativamente el índice de refracción y es un elemento que no es tóxico. El objetivo de este trabajo fue desarrollar nuevas composiciones de vidrio óptico que contengan Nb2O5 con un índice de refracción relativamente alto (nd > 1,65), un número Abbe intermediario (35 < Vd < 55) y una temperatura de transición vítrea razonable, Tg. Para ello, utilizamos un algoritmo de machine learning, GLAS, que fue desenvuelto recientemente en DEMa – UFSCar para la producción de nuevas formulaciones de vidrios ópticos. Tras ejecutar el algoritmo 13 veces, se eligieron dos de las composiciones más prometedoras y se comprobó su capacidad de formación de vidrio y otras propiedades. La mejor composición fue analizada con respecto al índice de refracción, la temperatura de transición vítrea y la durabilidad química. Una comparación entre los resultados de laboratorio y las predicciones de la red neural artificial muestra que el algoritmo GLAS proporciona formulaciones adecuadas y puede ser usado inmediatamente para acelerar el proyecto de nuevos vidrios, reduciendo sustancialmente el número de pruebas de laboratorio. Además de eso, los resultados indican que los vidrios de niobio pueden ofrecer algunas ventajas ante su principal competidor (La2O3).Vidros de alto índice de refração são essenciais para antigos e novos sistemas óticos, como microscópios, telescópios e novas lentes de realidade aumentada e microprojetores. No entanto, boa parte desses vidros utilizam componentes tóxicos, como PbO, BaO, As2O3 e TeO2, que levam a altos índices de refração e facilitam o processo de fusão, mas são prejudiciais ao ser humano e ao meio ambiente. Por outro lado, sabe-se que o nióbio aumenta significativamente o índice de refração e é um elemento que não é tóxico. O objetivo deste trabalho foi desenvolver novas composições de vidro ótico contendo Nb2O5 com índice de refração relativamente alto (nd > 1,65), número Abbe intermediário (35 < Vd < 55) e temperatura de transição vítrea razoável, Tg. Para tanto, utilizamos um algoritmo de machine learning, GLAS, que foi desenvolvido recentemente no DEMa - UFSCar para produção de novas formulações de vidros óticos. Depois de rodar o algoritmo 13 vezes, duas das composições mais promissoras foram escolhidas e testadas por sua capacidade de formação de vidro e outras propriedades. A melhor composição foi analisada em relação ao índice de refração, temperatura de transição vítrea e durabilidade química. Uma comparação entre os resultados laboratoriais e as previsões da rede neural artificial indica que o algoritmo GLAS fornece formulações adequadas e pode ser usado imediatamente para acelerar o projeto de novos vidros, reduzindo substancialmente o número de testes laboratoriais. Além disso, os resultados indicam que os vidros de nióbio podem oferecer algumas vantagens sobre seu principal concorrente (La2O3).Research, Society and Development2022-07-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/3129010.33448/rsd-v11i9.31290Research, Society and Development; Vol. 11 No. 9; e13811931290Research, Society and Development; Vol. 11 Núm. 9; e13811931290Research, Society and Development; v. 11 n. 9; e138119312902525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIenghttps://rsdjournal.org/index.php/rsd/article/view/31290/26995Copyright (c) 2022 Andreia Duarte Menezes; Edilberto Pereira Teixeira; Jose Roberto Delalibera Finzer; Rafael Bonacin de Oliveirahttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessMenezes, Andreia DuarteTeixeira, Edilberto Pereira Finzer, Jose Roberto DelaliberaOliveira, Rafael Bonacin de2022-07-21T12:36:16Zoai:ojs.pkp.sfu.ca:article/31290Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:47:41.030727Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false
dc.title.none.fl_str_mv Machine learning-driven development of niobium-containing optical glasses
Dessarrollo de vidrios ópticos conteniendo nióbio mediante machine learning
Desenvolvimento de vidros óticos contendo nióbio por machine learning
title Machine learning-driven development of niobium-containing optical glasses
spellingShingle Machine learning-driven development of niobium-containing optical glasses
Menezes, Andreia Duarte
Optical Glass
Niobium
Refractive Index
Abbe number
Artificial intelligence
Machine learning.
Vidros Óticos
Nióbio
Índice de Refração
Número de Abbe
Inteligência Artificial
Machine learning.
Vidrios Ópticos
Niobio
Índice de Refracción;
Número de Abbe
Inteligencia Artificial
Machine learning.
title_short Machine learning-driven development of niobium-containing optical glasses
title_full Machine learning-driven development of niobium-containing optical glasses
title_fullStr Machine learning-driven development of niobium-containing optical glasses
title_full_unstemmed Machine learning-driven development of niobium-containing optical glasses
title_sort Machine learning-driven development of niobium-containing optical glasses
author Menezes, Andreia Duarte
author_facet Menezes, Andreia Duarte
Teixeira, Edilberto Pereira
Finzer, Jose Roberto Delalibera
Oliveira, Rafael Bonacin de
author_role author
author2 Teixeira, Edilberto Pereira
Finzer, Jose Roberto Delalibera
Oliveira, Rafael Bonacin de
author2_role author
author
author
dc.contributor.author.fl_str_mv Menezes, Andreia Duarte
Teixeira, Edilberto Pereira
Finzer, Jose Roberto Delalibera
Oliveira, Rafael Bonacin de
dc.subject.por.fl_str_mv Optical Glass
Niobium
Refractive Index
Abbe number
Artificial intelligence
Machine learning.
Vidros Óticos
Nióbio
Índice de Refração
Número de Abbe
Inteligência Artificial
Machine learning.
Vidrios Ópticos
Niobio
Índice de Refracción;
Número de Abbe
Inteligencia Artificial
Machine learning.
topic Optical Glass
Niobium
Refractive Index
Abbe number
Artificial intelligence
Machine learning.
Vidros Óticos
Nióbio
Índice de Refração
Número de Abbe
Inteligência Artificial
Machine learning.
Vidrios Ópticos
Niobio
Índice de Refracción;
Número de Abbe
Inteligencia Artificial
Machine learning.
description High refractive index glasses are essential for old and new optical systems, such as microscopes, telescopes and novel augmented reality lenses and micro projectors. However, a fair portion of these glasses use toxic components, such as PbO, BaO, As2O3, and TeO2, which lead to high refractive indexes and facilitate the melting operation, but are harmful for human beings and the environment. On the other hand, it is known that niobium significantly increases the refractive index and is a non-toxic element. The objective of this paper was to develop new optical glass compositions containing Nb2O5 with a relatively high refractive index (nd > 1.65), intermediate Abbe number (35 < Vd < 55) and fair glass transition temperature, Tg. To this end, we used a machine learning algorithm titled GLAS, which was recently developed at DEMA-UFSCar to produce new optical glasses composition. After running the algorithm 13 times, two of the most promising compositions were chosen and tested for their glass forming ability and other properties. The best composition was analyzed in respect to the refractive index, glass transition temperature and chemical durability. A comparison between the laboratory results and predictions of the artificial neural network indicates that the GLAS algorithm provides adequate formulations and can be immediately used for accelerating the design of new glasses, substantially reducing the laboratory testing effort. Also, the results indicate that niobium glasses might offer some advantages over its main competitor (La2O3).
publishDate 2022
dc.date.none.fl_str_mv 2022-07-05
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/31290
10.33448/rsd-v11i9.31290
url https://rsdjournal.org/index.php/rsd/article/view/31290
identifier_str_mv 10.33448/rsd-v11i9.31290
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/31290/26995
dc.rights.driver.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Research, Society and Development
publisher.none.fl_str_mv Research, Society and Development
dc.source.none.fl_str_mv Research, Society and Development; Vol. 11 No. 9; e13811931290
Research, Society and Development; Vol. 11 Núm. 9; e13811931290
Research, Society and Development; v. 11 n. 9; e13811931290
2525-3409
reponame:Research, Society and Development
instname:Universidade Federal de Itajubá (UNIFEI)
instacron:UNIFEI
instname_str Universidade Federal de Itajubá (UNIFEI)
instacron_str UNIFEI
institution UNIFEI
reponame_str Research, Society and Development
collection Research, Society and Development
repository.name.fl_str_mv Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)
repository.mail.fl_str_mv rsd.articles@gmail.com
_version_ 1797052821164523520