Machine learning-driven development of niobium-containing optical glasses
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Research, Society and Development |
Texto Completo: | https://rsdjournal.org/index.php/rsd/article/view/31290 |
Resumo: | High refractive index glasses are essential for old and new optical systems, such as microscopes, telescopes and novel augmented reality lenses and micro projectors. However, a fair portion of these glasses use toxic components, such as PbO, BaO, As2O3, and TeO2, which lead to high refractive indexes and facilitate the melting operation, but are harmful for human beings and the environment. On the other hand, it is known that niobium significantly increases the refractive index and is a non-toxic element. The objective of this paper was to develop new optical glass compositions containing Nb2O5 with a relatively high refractive index (nd > 1.65), intermediate Abbe number (35 < Vd < 55) and fair glass transition temperature, Tg. To this end, we used a machine learning algorithm titled GLAS, which was recently developed at DEMA-UFSCar to produce new optical glasses composition. After running the algorithm 13 times, two of the most promising compositions were chosen and tested for their glass forming ability and other properties. The best composition was analyzed in respect to the refractive index, glass transition temperature and chemical durability. A comparison between the laboratory results and predictions of the artificial neural network indicates that the GLAS algorithm provides adequate formulations and can be immediately used for accelerating the design of new glasses, substantially reducing the laboratory testing effort. Also, the results indicate that niobium glasses might offer some advantages over its main competitor (La2O3). |
id |
UNIFEI_4c401ef2f0d5f8d69f3e4d3bc7b62001 |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/31290 |
network_acronym_str |
UNIFEI |
network_name_str |
Research, Society and Development |
repository_id_str |
|
spelling |
Machine learning-driven development of niobium-containing optical glasses Dessarrollo de vidrios ópticos conteniendo nióbio mediante machine learningDesenvolvimento de vidros óticos contendo nióbio por machine learningOptical GlassNiobiumRefractive IndexAbbe numberArtificial intelligenceMachine learning.Vidros ÓticosNióbioÍndice de RefraçãoNúmero de AbbeInteligência ArtificialMachine learning.Vidrios ÓpticosNiobioÍndice de Refracción;Número de AbbeInteligencia ArtificialMachine learning.High refractive index glasses are essential for old and new optical systems, such as microscopes, telescopes and novel augmented reality lenses and micro projectors. However, a fair portion of these glasses use toxic components, such as PbO, BaO, As2O3, and TeO2, which lead to high refractive indexes and facilitate the melting operation, but are harmful for human beings and the environment. On the other hand, it is known that niobium significantly increases the refractive index and is a non-toxic element. The objective of this paper was to develop new optical glass compositions containing Nb2O5 with a relatively high refractive index (nd > 1.65), intermediate Abbe number (35 < Vd < 55) and fair glass transition temperature, Tg. To this end, we used a machine learning algorithm titled GLAS, which was recently developed at DEMA-UFSCar to produce new optical glasses composition. After running the algorithm 13 times, two of the most promising compositions were chosen and tested for their glass forming ability and other properties. The best composition was analyzed in respect to the refractive index, glass transition temperature and chemical durability. A comparison between the laboratory results and predictions of the artificial neural network indicates that the GLAS algorithm provides adequate formulations and can be immediately used for accelerating the design of new glasses, substantially reducing the laboratory testing effort. Also, the results indicate that niobium glasses might offer some advantages over its main competitor (La2O3).Vidrios de alto índice de refracción son esenciales para antiguos y nuevos sistemas ópticos, como los microscopios, los telescopios y las nuevas lentes de realidad aumentada y microproyectores. Sin embargo, la mayoría de estos vidrios utilizan componentes tóxicos, como PbO, BaO, As2O3 y TeO2 que llevan a altos índices de refracción y facilitan el proceso de fusión, pero son perjudiciales para el ser humano y para el medio ambiente. Por otro lado, se sabe que el niobio aumenta significativamente el índice de refracción y es un elemento que no es tóxico. El objetivo de este trabajo fue desarrollar nuevas composiciones de vidrio óptico que contengan Nb2O5 con un índice de refracción relativamente alto (nd > 1,65), un número Abbe intermediario (35 < Vd < 55) y una temperatura de transición vítrea razonable, Tg. Para ello, utilizamos un algoritmo de machine learning, GLAS, que fue desenvuelto recientemente en DEMa – UFSCar para la producción de nuevas formulaciones de vidrios ópticos. Tras ejecutar el algoritmo 13 veces, se eligieron dos de las composiciones más prometedoras y se comprobó su capacidad de formación de vidrio y otras propiedades. La mejor composición fue analizada con respecto al índice de refracción, la temperatura de transición vítrea y la durabilidad química. Una comparación entre los resultados de laboratorio y las predicciones de la red neural artificial muestra que el algoritmo GLAS proporciona formulaciones adecuadas y puede ser usado inmediatamente para acelerar el proyecto de nuevos vidrios, reduciendo sustancialmente el número de pruebas de laboratorio. Además de eso, los resultados indican que los vidrios de niobio pueden ofrecer algunas ventajas ante su principal competidor (La2O3).Vidros de alto índice de refração são essenciais para antigos e novos sistemas óticos, como microscópios, telescópios e novas lentes de realidade aumentada e microprojetores. No entanto, boa parte desses vidros utilizam componentes tóxicos, como PbO, BaO, As2O3 e TeO2, que levam a altos índices de refração e facilitam o processo de fusão, mas são prejudiciais ao ser humano e ao meio ambiente. Por outro lado, sabe-se que o nióbio aumenta significativamente o índice de refração e é um elemento que não é tóxico. O objetivo deste trabalho foi desenvolver novas composições de vidro ótico contendo Nb2O5 com índice de refração relativamente alto (nd > 1,65), número Abbe intermediário (35 < Vd < 55) e temperatura de transição vítrea razoável, Tg. Para tanto, utilizamos um algoritmo de machine learning, GLAS, que foi desenvolvido recentemente no DEMa - UFSCar para produção de novas formulações de vidros óticos. Depois de rodar o algoritmo 13 vezes, duas das composições mais promissoras foram escolhidas e testadas por sua capacidade de formação de vidro e outras propriedades. A melhor composição foi analisada em relação ao índice de refração, temperatura de transição vítrea e durabilidade química. Uma comparação entre os resultados laboratoriais e as previsões da rede neural artificial indica que o algoritmo GLAS fornece formulações adequadas e pode ser usado imediatamente para acelerar o projeto de novos vidros, reduzindo substancialmente o número de testes laboratoriais. Além disso, os resultados indicam que os vidros de nióbio podem oferecer algumas vantagens sobre seu principal concorrente (La2O3).Research, Society and Development2022-07-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/3129010.33448/rsd-v11i9.31290Research, Society and Development; Vol. 11 No. 9; e13811931290Research, Society and Development; Vol. 11 Núm. 9; e13811931290Research, Society and Development; v. 11 n. 9; e138119312902525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIenghttps://rsdjournal.org/index.php/rsd/article/view/31290/26995Copyright (c) 2022 Andreia Duarte Menezes; Edilberto Pereira Teixeira; Jose Roberto Delalibera Finzer; Rafael Bonacin de Oliveirahttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessMenezes, Andreia DuarteTeixeira, Edilberto Pereira Finzer, Jose Roberto DelaliberaOliveira, Rafael Bonacin de2022-07-21T12:36:16Zoai:ojs.pkp.sfu.ca:article/31290Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:47:41.030727Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false |
dc.title.none.fl_str_mv |
Machine learning-driven development of niobium-containing optical glasses Dessarrollo de vidrios ópticos conteniendo nióbio mediante machine learning Desenvolvimento de vidros óticos contendo nióbio por machine learning |
title |
Machine learning-driven development of niobium-containing optical glasses |
spellingShingle |
Machine learning-driven development of niobium-containing optical glasses Menezes, Andreia Duarte Optical Glass Niobium Refractive Index Abbe number Artificial intelligence Machine learning. Vidros Óticos Nióbio Índice de Refração Número de Abbe Inteligência Artificial Machine learning. Vidrios Ópticos Niobio Índice de Refracción; Número de Abbe Inteligencia Artificial Machine learning. |
title_short |
Machine learning-driven development of niobium-containing optical glasses |
title_full |
Machine learning-driven development of niobium-containing optical glasses |
title_fullStr |
Machine learning-driven development of niobium-containing optical glasses |
title_full_unstemmed |
Machine learning-driven development of niobium-containing optical glasses |
title_sort |
Machine learning-driven development of niobium-containing optical glasses |
author |
Menezes, Andreia Duarte |
author_facet |
Menezes, Andreia Duarte Teixeira, Edilberto Pereira Finzer, Jose Roberto Delalibera Oliveira, Rafael Bonacin de |
author_role |
author |
author2 |
Teixeira, Edilberto Pereira Finzer, Jose Roberto Delalibera Oliveira, Rafael Bonacin de |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Menezes, Andreia Duarte Teixeira, Edilberto Pereira Finzer, Jose Roberto Delalibera Oliveira, Rafael Bonacin de |
dc.subject.por.fl_str_mv |
Optical Glass Niobium Refractive Index Abbe number Artificial intelligence Machine learning. Vidros Óticos Nióbio Índice de Refração Número de Abbe Inteligência Artificial Machine learning. Vidrios Ópticos Niobio Índice de Refracción; Número de Abbe Inteligencia Artificial Machine learning. |
topic |
Optical Glass Niobium Refractive Index Abbe number Artificial intelligence Machine learning. Vidros Óticos Nióbio Índice de Refração Número de Abbe Inteligência Artificial Machine learning. Vidrios Ópticos Niobio Índice de Refracción; Número de Abbe Inteligencia Artificial Machine learning. |
description |
High refractive index glasses are essential for old and new optical systems, such as microscopes, telescopes and novel augmented reality lenses and micro projectors. However, a fair portion of these glasses use toxic components, such as PbO, BaO, As2O3, and TeO2, which lead to high refractive indexes and facilitate the melting operation, but are harmful for human beings and the environment. On the other hand, it is known that niobium significantly increases the refractive index and is a non-toxic element. The objective of this paper was to develop new optical glass compositions containing Nb2O5 with a relatively high refractive index (nd > 1.65), intermediate Abbe number (35 < Vd < 55) and fair glass transition temperature, Tg. To this end, we used a machine learning algorithm titled GLAS, which was recently developed at DEMA-UFSCar to produce new optical glasses composition. After running the algorithm 13 times, two of the most promising compositions were chosen and tested for their glass forming ability and other properties. The best composition was analyzed in respect to the refractive index, glass transition temperature and chemical durability. A comparison between the laboratory results and predictions of the artificial neural network indicates that the GLAS algorithm provides adequate formulations and can be immediately used for accelerating the design of new glasses, substantially reducing the laboratory testing effort. Also, the results indicate that niobium glasses might offer some advantages over its main competitor (La2O3). |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-07-05 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/31290 10.33448/rsd-v11i9.31290 |
url |
https://rsdjournal.org/index.php/rsd/article/view/31290 |
identifier_str_mv |
10.33448/rsd-v11i9.31290 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/31290/26995 |
dc.rights.driver.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Research, Society and Development |
publisher.none.fl_str_mv |
Research, Society and Development |
dc.source.none.fl_str_mv |
Research, Society and Development; Vol. 11 No. 9; e13811931290 Research, Society and Development; Vol. 11 Núm. 9; e13811931290 Research, Society and Development; v. 11 n. 9; e13811931290 2525-3409 reponame:Research, Society and Development instname:Universidade Federal de Itajubá (UNIFEI) instacron:UNIFEI |
instname_str |
Universidade Federal de Itajubá (UNIFEI) |
instacron_str |
UNIFEI |
institution |
UNIFEI |
reponame_str |
Research, Society and Development |
collection |
Research, Society and Development |
repository.name.fl_str_mv |
Research, Society and Development - Universidade Federal de Itajubá (UNIFEI) |
repository.mail.fl_str_mv |
rsd.articles@gmail.com |
_version_ |
1797052821164523520 |