Behavior of financial agents in an artificial market developed with the Particle Swarm Optimization algorithm
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Research, Society and Development |
Texto Completo: | https://rsdjournal.org/index.php/rsd/article/view/4216 |
Resumo: | Financial markets are complex systems in which traders interact using the most varied strategies. Computational techniques that use intelligent agents can assist in decision making in order to maximize gains. In this sense, the objective of this article is to observe the behavior of financial agents participating in simulated markets and infer about the gains of these agents. Through the Particle Swarm Optimization algorithm, we used two distinct groups of intelligent agents: one group uses a degree of belief in the prediction of assets for the next day and the other group does not use, in which both interact with each other seeking to maximize their gains. An exploratory research was carried out, with quantitative analysis on the data. The results showed that the group that uses the forecast is more homogeneous, showing higher average wealth gains, with capital and acquired stock concentrations varying according to the historical price series used (Bitcoin, Ethereum, Litcoin, or Ripple). Therefore, the implemented procedure can be improved and used for the development of environments aimed at a better understanding of financial markets and assisting market participants in the definition of trading strategies that enable the minimization of financial losses. |
id |
UNIFEI_5835d4e6bfa9c977f29bcff5d80afcc5 |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/4216 |
network_acronym_str |
UNIFEI |
network_name_str |
Research, Society and Development |
repository_id_str |
|
spelling |
Behavior of financial agents in an artificial market developed with the Particle Swarm Optimization algorithmComportamiento de agentes financieros en un mercado artificial desarrollado con el algoritmo Particle Swarm OptimizationComportamento de agentes financeiros em um mercado artificial desenvolvido com o algoritmo Particle Swarm OptimizationFinancial marketsComputational SimulationOptimizationPSOMercados FinanceirosSimulação ComputacionalOtimizaçãoPSOMercados financierosSimulación computacionalOptimizaciónPSOFinancial markets are complex systems in which traders interact using the most varied strategies. Computational techniques that use intelligent agents can assist in decision making in order to maximize gains. In this sense, the objective of this article is to observe the behavior of financial agents participating in simulated markets and infer about the gains of these agents. Through the Particle Swarm Optimization algorithm, we used two distinct groups of intelligent agents: one group uses a degree of belief in the prediction of assets for the next day and the other group does not use, in which both interact with each other seeking to maximize their gains. An exploratory research was carried out, with quantitative analysis on the data. The results showed that the group that uses the forecast is more homogeneous, showing higher average wealth gains, with capital and acquired stock concentrations varying according to the historical price series used (Bitcoin, Ethereum, Litcoin, or Ripple). Therefore, the implemented procedure can be improved and used for the development of environments aimed at a better understanding of financial markets and assisting market participants in the definition of trading strategies that enable the minimization of financial losses.Los mercados financieros son sistemas complejos en los que los comerciantes interactúan utilizando las estrategias más variadas. Las técnicas computacionales que utilizan agentes inteligentes pueden ayudar en la toma de decisiones con el fin de maximizar las ganancias. En este sentido, el objetivo de este artículo es observar el comportamiento de los agentes financieros que participan en mercados simulados e inferir sobre las ganancias de estos agentes. A través del algoritmo Particle Swarm Optimization, utilizamos dos grupos distintos de agentes inteligentes: un grupo utiliza un grado de creencia en la predicción de activos para el día siguiente y el otro grupo no utiliza, en el que ambos interactúan entre sí buscando maximizar sus ganancias. Se llevó a cabo una investigación exploratoria, con análisis cuantitativos de los datos. Los resultados mostraron que el grupo que utiliza el pronóstico es más homogéneo, mostrando mayores ganancias medias de riqueza, con el capital y las concentraciones de acciones adquiridas que varían según la serie de precios históricos utilizada (Bitcoin, Ethereum, Litcoin o Ripple). Por lo tanto, el procedimiento implementado puede mejorarse y utilizarse para el desarrollo de entornos orientados a una mejor comprensión de los mercados financieros y ayudar a los participantes del mercado en la definición de estrategias comerciales que permitan la minimización de las pérdidas financieras.Os mercados financeiros são sistemas complexos em que os negociadores interagem usando as mais variadas estratégias. Técnicas computacionais que usam agentes inteligentes podem auxiliar na tomada de decisão com o objetivo de maximizar os ganhos. Neste sentido, o objetivo deste artigo é observar o comportamento dos agentes financeiros participantes de mercados simulados e inferir sobre os ganhos destes agentes. Por meio do algoritmo Particle Swarm Optimization, utilizamos dois grupos distintos de agente inteligentes: um grupo utiliza um grau de crença na previsão dos ativos para o dia seguinte e o outro grupo não utiliza, em que ambos interagem entre si buscando maximizar seus ganhos. Foi realizada uma pesquisa exploratória, com análise de natureza quantitativa sobre os dados. Os resultados mostraram que o grupo que usa a previsão é mais homogêneo, apresentando maiores ganhos de riqueza média, com concentrações de capital e de ações adquiridos variando de acordo com a série histórica de preços utilizada (Bitcoin, Ethereum, Litcoin ou Ripple). Diante disso, o procedimento implementado pode ser aperfeiçoado e utilizado para o desenvolvimento de ambientes que visem a melhor compreensão dos mercados financeiros e auxiliem os agentes participantes dos mercados na definição de estratégias de negociação que possibilitem a minimização de perdas financeiras.Research, Society and Development2020-05-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/421610.33448/rsd-v9i7.4216Research, Society and Development; Vol. 9 No. 7; e285974216Research, Society and Development; Vol. 9 Núm. 7; e285974216Research, Society and Development; v. 9 n. 7; e2859742162525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIporhttps://rsdjournal.org/index.php/rsd/article/view/4216/3442Copyright (c) 2020 Kerolly Kedma Felix do Nascimento, Fabio Sandro dos Santos, Jader da Silva Jale, Tiago Alessandro Espínola Ferreirainfo:eu-repo/semantics/openAccessNascimento, Kerolly Kedma Felix doSantos, Fábio Sandro dosJale, Jader da SilvaFerreira, Tiago Alessandro Espínola2020-08-20T18:05:03Zoai:ojs.pkp.sfu.ca:article/4216Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:28:08.401432Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false |
dc.title.none.fl_str_mv |
Behavior of financial agents in an artificial market developed with the Particle Swarm Optimization algorithm Comportamiento de agentes financieros en un mercado artificial desarrollado con el algoritmo Particle Swarm Optimization Comportamento de agentes financeiros em um mercado artificial desenvolvido com o algoritmo Particle Swarm Optimization |
title |
Behavior of financial agents in an artificial market developed with the Particle Swarm Optimization algorithm |
spellingShingle |
Behavior of financial agents in an artificial market developed with the Particle Swarm Optimization algorithm Nascimento, Kerolly Kedma Felix do Financial markets Computational Simulation Optimization PSO Mercados Financeiros Simulação Computacional Otimização PSO Mercados financieros Simulación computacional Optimización PSO |
title_short |
Behavior of financial agents in an artificial market developed with the Particle Swarm Optimization algorithm |
title_full |
Behavior of financial agents in an artificial market developed with the Particle Swarm Optimization algorithm |
title_fullStr |
Behavior of financial agents in an artificial market developed with the Particle Swarm Optimization algorithm |
title_full_unstemmed |
Behavior of financial agents in an artificial market developed with the Particle Swarm Optimization algorithm |
title_sort |
Behavior of financial agents in an artificial market developed with the Particle Swarm Optimization algorithm |
author |
Nascimento, Kerolly Kedma Felix do |
author_facet |
Nascimento, Kerolly Kedma Felix do Santos, Fábio Sandro dos Jale, Jader da Silva Ferreira, Tiago Alessandro Espínola |
author_role |
author |
author2 |
Santos, Fábio Sandro dos Jale, Jader da Silva Ferreira, Tiago Alessandro Espínola |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Nascimento, Kerolly Kedma Felix do Santos, Fábio Sandro dos Jale, Jader da Silva Ferreira, Tiago Alessandro Espínola |
dc.subject.por.fl_str_mv |
Financial markets Computational Simulation Optimization PSO Mercados Financeiros Simulação Computacional Otimização PSO Mercados financieros Simulación computacional Optimización PSO |
topic |
Financial markets Computational Simulation Optimization PSO Mercados Financeiros Simulação Computacional Otimização PSO Mercados financieros Simulación computacional Optimización PSO |
description |
Financial markets are complex systems in which traders interact using the most varied strategies. Computational techniques that use intelligent agents can assist in decision making in order to maximize gains. In this sense, the objective of this article is to observe the behavior of financial agents participating in simulated markets and infer about the gains of these agents. Through the Particle Swarm Optimization algorithm, we used two distinct groups of intelligent agents: one group uses a degree of belief in the prediction of assets for the next day and the other group does not use, in which both interact with each other seeking to maximize their gains. An exploratory research was carried out, with quantitative analysis on the data. The results showed that the group that uses the forecast is more homogeneous, showing higher average wealth gains, with capital and acquired stock concentrations varying according to the historical price series used (Bitcoin, Ethereum, Litcoin, or Ripple). Therefore, the implemented procedure can be improved and used for the development of environments aimed at a better understanding of financial markets and assisting market participants in the definition of trading strategies that enable the minimization of financial losses. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-05-12 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/4216 10.33448/rsd-v9i7.4216 |
url |
https://rsdjournal.org/index.php/rsd/article/view/4216 |
identifier_str_mv |
10.33448/rsd-v9i7.4216 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/4216/3442 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Research, Society and Development |
publisher.none.fl_str_mv |
Research, Society and Development |
dc.source.none.fl_str_mv |
Research, Society and Development; Vol. 9 No. 7; e285974216 Research, Society and Development; Vol. 9 Núm. 7; e285974216 Research, Society and Development; v. 9 n. 7; e285974216 2525-3409 reponame:Research, Society and Development instname:Universidade Federal de Itajubá (UNIFEI) instacron:UNIFEI |
instname_str |
Universidade Federal de Itajubá (UNIFEI) |
instacron_str |
UNIFEI |
institution |
UNIFEI |
reponame_str |
Research, Society and Development |
collection |
Research, Society and Development |
repository.name.fl_str_mv |
Research, Society and Development - Universidade Federal de Itajubá (UNIFEI) |
repository.mail.fl_str_mv |
rsd.articles@gmail.com |
_version_ |
1797052815706685440 |