Behavior of financial agents in an artificial market developed with the Particle Swarm Optimization algorithm

Detalhes bibliográficos
Autor(a) principal: Nascimento, Kerolly Kedma Felix do
Data de Publicação: 2020
Outros Autores: Santos, Fábio Sandro dos, Jale, Jader da Silva, Ferreira, Tiago Alessandro Espínola
Tipo de documento: Artigo
Idioma: por
Título da fonte: Research, Society and Development
Texto Completo: https://rsdjournal.org/index.php/rsd/article/view/4216
Resumo: Financial markets are complex systems in which traders interact using the most varied strategies. Computational techniques that use intelligent agents can assist in decision making in order to maximize gains. In this sense, the objective of this article is to observe the behavior of financial agents participating in simulated markets and infer about the gains of these agents. Through the Particle Swarm Optimization algorithm, we used two distinct groups of intelligent agents: one group uses a degree of belief in the prediction of assets for the next day and the other group does not use, in which both interact with each other seeking to maximize their gains. An exploratory research was carried out, with quantitative analysis on the data. The results showed that the group that uses the forecast is more homogeneous, showing higher average wealth gains, with capital and acquired stock concentrations varying according to the historical price series used (Bitcoin, Ethereum, Litcoin, or Ripple). Therefore, the implemented procedure can be improved and used for the development of environments aimed at a better understanding of financial markets and assisting market participants in the definition of trading strategies that enable the minimization of financial losses.
id UNIFEI_5835d4e6bfa9c977f29bcff5d80afcc5
oai_identifier_str oai:ojs.pkp.sfu.ca:article/4216
network_acronym_str UNIFEI
network_name_str Research, Society and Development
repository_id_str
spelling Behavior of financial agents in an artificial market developed with the Particle Swarm Optimization algorithmComportamiento de agentes financieros en un mercado artificial desarrollado con el algoritmo Particle Swarm OptimizationComportamento de agentes financeiros em um mercado artificial desenvolvido com o algoritmo Particle Swarm OptimizationFinancial marketsComputational SimulationOptimizationPSOMercados FinanceirosSimulação ComputacionalOtimizaçãoPSOMercados financierosSimulación computacionalOptimizaciónPSOFinancial markets are complex systems in which traders interact using the most varied strategies. Computational techniques that use intelligent agents can assist in decision making in order to maximize gains. In this sense, the objective of this article is to observe the behavior of financial agents participating in simulated markets and infer about the gains of these agents. Through the Particle Swarm Optimization algorithm, we used two distinct groups of intelligent agents: one group uses a degree of belief in the prediction of assets for the next day and the other group does not use, in which both interact with each other seeking to maximize their gains. An exploratory research was carried out, with quantitative analysis on the data. The results showed that the group that uses the forecast is more homogeneous, showing higher average wealth gains, with capital and acquired stock concentrations varying according to the historical price series used (Bitcoin, Ethereum, Litcoin, or Ripple). Therefore, the implemented procedure can be improved and used for the development of environments aimed at a better understanding of financial markets and assisting market participants in the definition of trading strategies that enable the minimization of financial losses.Los mercados financieros son sistemas complejos en los que los comerciantes interactúan utilizando las estrategias más variadas. Las técnicas computacionales que utilizan agentes inteligentes pueden ayudar en la toma de decisiones con el fin de maximizar las ganancias. En este sentido, el objetivo de este artículo es observar el comportamiento de los agentes financieros que participan en mercados simulados e inferir sobre las ganancias de estos agentes. A través del algoritmo Particle Swarm Optimization, utilizamos dos grupos distintos de agentes inteligentes: un grupo utiliza un grado de creencia en la predicción de activos para el día siguiente y el otro grupo no utiliza, en el que ambos interactúan entre sí buscando maximizar sus ganancias. Se llevó a cabo una investigación exploratoria, con análisis cuantitativos de los datos. Los resultados mostraron que el grupo que utiliza el pronóstico es más homogéneo, mostrando mayores ganancias medias de riqueza, con el capital y las concentraciones de acciones adquiridas que varían según la serie de precios históricos utilizada (Bitcoin, Ethereum, Litcoin o Ripple). Por lo tanto, el procedimiento implementado puede mejorarse y utilizarse para el desarrollo de entornos orientados a una mejor comprensión de los mercados financieros y ayudar a los participantes del mercado en la definición de estrategias comerciales que permitan la minimización de las pérdidas financieras.Os mercados financeiros são sistemas complexos em que os negociadores interagem usando as mais variadas estratégias. Técnicas computacionais que usam agentes inteligentes podem auxiliar na tomada de decisão com o objetivo de maximizar os ganhos. Neste sentido, o objetivo deste artigo é observar o comportamento dos agentes financeiros participantes de mercados simulados e inferir sobre os ganhos destes agentes. Por meio do algoritmo Particle Swarm Optimization, utilizamos dois grupos distintos de agente inteligentes: um grupo utiliza um grau de crença na previsão dos ativos para o dia seguinte e o outro grupo não utiliza, em que ambos interagem entre si buscando maximizar seus ganhos. Foi realizada uma pesquisa exploratória, com análise de natureza quantitativa sobre os dados. Os resultados mostraram que o grupo que usa a previsão é mais homogêneo, apresentando maiores ganhos de riqueza média, com concentrações de capital e de ações adquiridos variando de acordo com a série histórica de preços utilizada (Bitcoin, Ethereum, Litcoin ou Ripple). Diante disso, o procedimento implementado pode ser aperfeiçoado e utilizado para o desenvolvimento de ambientes que visem a melhor compreensão dos mercados financeiros e auxiliem os agentes participantes dos mercados na definição de estratégias de negociação que possibilitem a minimização de perdas financeiras.Research, Society and Development2020-05-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/421610.33448/rsd-v9i7.4216Research, Society and Development; Vol. 9 No. 7; e285974216Research, Society and Development; Vol. 9 Núm. 7; e285974216Research, Society and Development; v. 9 n. 7; e2859742162525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIporhttps://rsdjournal.org/index.php/rsd/article/view/4216/3442Copyright (c) 2020 Kerolly Kedma Felix do Nascimento, Fabio Sandro dos Santos, Jader da Silva Jale, Tiago Alessandro Espínola Ferreirainfo:eu-repo/semantics/openAccessNascimento, Kerolly Kedma Felix doSantos, Fábio Sandro dosJale, Jader da SilvaFerreira, Tiago Alessandro Espínola2020-08-20T18:05:03Zoai:ojs.pkp.sfu.ca:article/4216Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:28:08.401432Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false
dc.title.none.fl_str_mv Behavior of financial agents in an artificial market developed with the Particle Swarm Optimization algorithm
Comportamiento de agentes financieros en un mercado artificial desarrollado con el algoritmo Particle Swarm Optimization
Comportamento de agentes financeiros em um mercado artificial desenvolvido com o algoritmo Particle Swarm Optimization
title Behavior of financial agents in an artificial market developed with the Particle Swarm Optimization algorithm
spellingShingle Behavior of financial agents in an artificial market developed with the Particle Swarm Optimization algorithm
Nascimento, Kerolly Kedma Felix do
Financial markets
Computational Simulation
Optimization
PSO
Mercados Financeiros
Simulação Computacional
Otimização
PSO
Mercados financieros
Simulación computacional
Optimización
PSO
title_short Behavior of financial agents in an artificial market developed with the Particle Swarm Optimization algorithm
title_full Behavior of financial agents in an artificial market developed with the Particle Swarm Optimization algorithm
title_fullStr Behavior of financial agents in an artificial market developed with the Particle Swarm Optimization algorithm
title_full_unstemmed Behavior of financial agents in an artificial market developed with the Particle Swarm Optimization algorithm
title_sort Behavior of financial agents in an artificial market developed with the Particle Swarm Optimization algorithm
author Nascimento, Kerolly Kedma Felix do
author_facet Nascimento, Kerolly Kedma Felix do
Santos, Fábio Sandro dos
Jale, Jader da Silva
Ferreira, Tiago Alessandro Espínola
author_role author
author2 Santos, Fábio Sandro dos
Jale, Jader da Silva
Ferreira, Tiago Alessandro Espínola
author2_role author
author
author
dc.contributor.author.fl_str_mv Nascimento, Kerolly Kedma Felix do
Santos, Fábio Sandro dos
Jale, Jader da Silva
Ferreira, Tiago Alessandro Espínola
dc.subject.por.fl_str_mv Financial markets
Computational Simulation
Optimization
PSO
Mercados Financeiros
Simulação Computacional
Otimização
PSO
Mercados financieros
Simulación computacional
Optimización
PSO
topic Financial markets
Computational Simulation
Optimization
PSO
Mercados Financeiros
Simulação Computacional
Otimização
PSO
Mercados financieros
Simulación computacional
Optimización
PSO
description Financial markets are complex systems in which traders interact using the most varied strategies. Computational techniques that use intelligent agents can assist in decision making in order to maximize gains. In this sense, the objective of this article is to observe the behavior of financial agents participating in simulated markets and infer about the gains of these agents. Through the Particle Swarm Optimization algorithm, we used two distinct groups of intelligent agents: one group uses a degree of belief in the prediction of assets for the next day and the other group does not use, in which both interact with each other seeking to maximize their gains. An exploratory research was carried out, with quantitative analysis on the data. The results showed that the group that uses the forecast is more homogeneous, showing higher average wealth gains, with capital and acquired stock concentrations varying according to the historical price series used (Bitcoin, Ethereum, Litcoin, or Ripple). Therefore, the implemented procedure can be improved and used for the development of environments aimed at a better understanding of financial markets and assisting market participants in the definition of trading strategies that enable the minimization of financial losses.
publishDate 2020
dc.date.none.fl_str_mv 2020-05-12
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/4216
10.33448/rsd-v9i7.4216
url https://rsdjournal.org/index.php/rsd/article/view/4216
identifier_str_mv 10.33448/rsd-v9i7.4216
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/4216/3442
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Research, Society and Development
publisher.none.fl_str_mv Research, Society and Development
dc.source.none.fl_str_mv Research, Society and Development; Vol. 9 No. 7; e285974216
Research, Society and Development; Vol. 9 Núm. 7; e285974216
Research, Society and Development; v. 9 n. 7; e285974216
2525-3409
reponame:Research, Society and Development
instname:Universidade Federal de Itajubá (UNIFEI)
instacron:UNIFEI
instname_str Universidade Federal de Itajubá (UNIFEI)
instacron_str UNIFEI
institution UNIFEI
reponame_str Research, Society and Development
collection Research, Society and Development
repository.name.fl_str_mv Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)
repository.mail.fl_str_mv rsd.articles@gmail.com
_version_ 1797052815706685440