Adjustment of a time series model to predict rainfall

Detalhes bibliográficos
Autor(a) principal: Santos, Pedro Henrique Alves Bittencourt
Data de Publicação: 2021
Outros Autores: Delfino, Otávio Augusto dos Santos, Santos, Ricardo Vitor Ribeiro dos, Nascimento, Mateus do
Tipo de documento: Artigo
Idioma: por
Título da fonte: Research, Society and Development
Texto Completo: https://rsdjournal.org/index.php/rsd/article/view/15643
Resumo: Precipitation is one of the most relevant meteorological variables for climate studies. Knowing its spatial and temporal variability allows planning various human activities, both from an economic and social point of view. Such importance is due to the consequences that it can cause, in excess or in lack, causing floods, floods, droughts, decrease in energy supply, low food production, among others. This study aimed to study the historical series of average monthly rainfall in the city of Lavras/MG in order to obtain a statistical model that allows predictions to be made. For this purpose, 228 observations were used corresponding to the period from January 2000 to December 2018 for this analysis, the existence of the trend and seasonality components was verified. The Box and Jenkins methodology was used to model the data. Some models were adjusted using the SARIMA class, as the series under study showed stochastic seasonality. The comparison between the models considered suitable for the series was performed using the NDE and AIC. The SARIMA (0,0,0) x (0,1,1)12 model was used to make predictions of future observations. The series of monthly average rainfall in the city of Lavras/MG presented a seasonal component with a periodicity of 12 months. The adjusted model obtained a very good result, since the 95% confidence intervals contained the twelve real values ​​of average monthly rainfall in the city of Lavras/MG for the year 2019, even in the face of unforeseen and uncertainties associated with climatic factors. The model in question can be used in decision making to carry out future strategic plans that involve public issues associated with the city of Lavras. These forecasts can also be used to assist the managers of the Funil/MG hydroelectric plant to schedule future water flow operations and maintenance properly, as it is close to the municipality of Lavras.
id UNIFEI_599b2f31bf83a62d3ed9d0b17e775fd0
oai_identifier_str oai:ojs.pkp.sfu.ca:article/15643
network_acronym_str UNIFEI
network_name_str Research, Society and Development
repository_id_str
spelling Adjustment of a time series model to predict rainfall Ajuste de un modelo de serie de tiempo para predecir la lluvia Ajuste de um modelo de séries temporais para prever a precipitação pluviométrica MeteorológicasPrevisõesSazonalidadeModelo SARIMA.MeteorologicalForecastsSeasonalityModel SARIMA.MeteorológicoPrevisiónEstacionalidadModelo SARIMA.Precipitation is one of the most relevant meteorological variables for climate studies. Knowing its spatial and temporal variability allows planning various human activities, both from an economic and social point of view. Such importance is due to the consequences that it can cause, in excess or in lack, causing floods, floods, droughts, decrease in energy supply, low food production, among others. This study aimed to study the historical series of average monthly rainfall in the city of Lavras/MG in order to obtain a statistical model that allows predictions to be made. For this purpose, 228 observations were used corresponding to the period from January 2000 to December 2018 for this analysis, the existence of the trend and seasonality components was verified. The Box and Jenkins methodology was used to model the data. Some models were adjusted using the SARIMA class, as the series under study showed stochastic seasonality. The comparison between the models considered suitable for the series was performed using the NDE and AIC. The SARIMA (0,0,0) x (0,1,1)12 model was used to make predictions of future observations. The series of monthly average rainfall in the city of Lavras/MG presented a seasonal component with a periodicity of 12 months. The adjusted model obtained a very good result, since the 95% confidence intervals contained the twelve real values ​​of average monthly rainfall in the city of Lavras/MG for the year 2019, even in the face of unforeseen and uncertainties associated with climatic factors. The model in question can be used in decision making to carry out future strategic plans that involve public issues associated with the city of Lavras. These forecasts can also be used to assist the managers of the Funil/MG hydroelectric plant to schedule future water flow operations and maintenance properly, as it is close to the municipality of Lavras.La precipitación es una de las variables meteorológicas más relevantes para el estudio del clima. Conocer su variabilidad espacial y temporal permite planificar diversas actividades humanas, tanto desde el punto de vista económico como social. Dicha importancia se debe a las consecuencias que puede ocasionar, por exceso o por defecto, provocando inundaciones, riadas, sequías, disminución del suministro energético, baja producción de alimentos, entre otras. Este estudio tuvo como objetivo estudiar la serie histórica de la precipitación media mensual en la ciudad de Lavras/MG con el fin de obtener un modelo estadístico que permita realizar predicciones. Para ello, se utilizaron 228 observaciones correspondientes al período comprendido entre enero de 2000 y diciembre de 2018 Para este análisis, se verificó la existencia de los componentes de tendencia y estacionalidad. Se utilizó la metodología de Box y Jenkins para modelar los datos. Algunos modelos se ajustaron mediante la clase SARIMA, ya que la serie en estudio presentaba estacionalidad estocástica. La comparación entre los modelos considerados adecuados para la serie se realizó mediante el NDE y el AIC. Se utilizó el modelo SARIMA (0,0,0) x (0,1,1)12 para realizar las predicciones de las observaciones futuras. La serie de precipitaciones medias mensuales en la ciudad de Lavras/MG presentó una componente estacional con una periodicidad de 12 meses. El modelo ajustado obtuvo un muy buen resultado, ya que los intervalos de confianza del 95% contenían los doce valores reales de la precipitación media mensual en la ciudad de Lavras/MG para el año 2019, incluso ante imprevistos e incertidumbres asociadas a factores climáticos. El modelo en cuestión puede ser utilizado en la toma de decisiones para llevar a cabo futuros planes estratégicos que implican cuestiones públicas asociadas a la ciudad de Lavras. Estas previsiones también pueden utilizarse para ayudar a los gestores de la central hidroeléctrica de Funil/MG a programar adecuadamente las futuras operaciones de flujo de agua y su mantenimiento, ya que está cerca del municipio de Lavras.A precipitação pluviométrica é uma das variáveis meteorológicas mais relevantes para estudos climáticos. Conhecer sua variabilidade espacial e temporal permite planejar diversas atividades humanas, tanto do ponto de vista econômico quanto social. Tal importância deve-se às consequências que ela pode ocasionar, em excesso ou em falta, causando enchentes, inundações, secas, queda no fornecimento de energia, baixa produção de alimentos, entre outros. Este trabalho teve como objetivo estudar a série histórica de precipitação pluviométrica média mensal da cidade de Lavras/MG a fim de obter um modelo estatístico que permita realizar previsões, para isso utilizou-se 228 observações correspondente ao período de janeiro de 2000 a dezembro de 2018. Para esta análise, foi verificada a existência das componentes tendência e sazonalidade. A metodologia de Box e Jenkins foi utilizada na modelagem dos dados. Foram ajustados alguns modelos utilizando a classe SARIMA, pois a série em estudo apresentou sazonalidade estocástica. A comparação entre os modelos considerados adequados à série foi realizada através do EQM e AIC. O modelo SARIMA (0,0,0) x (0,1,1)12 foi utilizado para fazer previsões de observações futuras. A série de precipitação pluviométrica média mensal da cidade de Lavras/MG apresentou uma componente sazonal com periodicidade de 12 meses. O modelo ajustado obteve um resultado muito bom, pois os intervalos de confiança a 95% contiveram os doze valores reais de precipitação pluviométrica média mensal da cidade de Lavras/MG para o ano de 2019, mesmo diante dos imprevistos e incertezas associadas a fatores climáticos. O modelo em questão pode ser utilizado na tomada de decisões para a realização de planejamentos estratégicos futuros que envolvem questões públicas associadas à cidade de Lavras. Estas previsões também podem ser utilizadas para auxiliar os gestores da usina hidrelétrica do Funil/MG a programar operações e manutenções futuras da vazão de água de forma adequada, pois esta se encontra próxima ao município de Lavras.Research, Society and Development2021-06-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/1564310.33448/rsd-v10i6.15643Research, Society and Development; Vol. 10 No. 6; e41810615643Research, Society and Development; Vol. 10 Núm. 6; e41810615643Research, Society and Development; v. 10 n. 6; e418106156432525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIporhttps://rsdjournal.org/index.php/rsd/article/view/15643/14254Copyright (c) 2021 Pedro Henrique Alves Bittencourt Santos; Otávio Augusto dos Santos Delfino; Ricardo Vitor Ribeiro dos Santos; Mateus do Nascimentohttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessSantos, Pedro Henrique Alves Bittencourt Delfino, Otávio Augusto dos SantosSantos, Ricardo Vitor Ribeiro dos Nascimento, Mateus do2021-06-10T22:51:46Zoai:ojs.pkp.sfu.ca:article/15643Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:36:25.201834Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false
dc.title.none.fl_str_mv Adjustment of a time series model to predict rainfall
Ajuste de un modelo de serie de tiempo para predecir la lluvia
Ajuste de um modelo de séries temporais para prever a precipitação pluviométrica
title Adjustment of a time series model to predict rainfall
spellingShingle Adjustment of a time series model to predict rainfall
Santos, Pedro Henrique Alves Bittencourt
Meteorológicas
Previsões
Sazonalidade
Modelo SARIMA.
Meteorological
Forecasts
Seasonality
Model SARIMA.
Meteorológico
Previsión
Estacionalidad
Modelo SARIMA.
title_short Adjustment of a time series model to predict rainfall
title_full Adjustment of a time series model to predict rainfall
title_fullStr Adjustment of a time series model to predict rainfall
title_full_unstemmed Adjustment of a time series model to predict rainfall
title_sort Adjustment of a time series model to predict rainfall
author Santos, Pedro Henrique Alves Bittencourt
author_facet Santos, Pedro Henrique Alves Bittencourt
Delfino, Otávio Augusto dos Santos
Santos, Ricardo Vitor Ribeiro dos
Nascimento, Mateus do
author_role author
author2 Delfino, Otávio Augusto dos Santos
Santos, Ricardo Vitor Ribeiro dos
Nascimento, Mateus do
author2_role author
author
author
dc.contributor.author.fl_str_mv Santos, Pedro Henrique Alves Bittencourt
Delfino, Otávio Augusto dos Santos
Santos, Ricardo Vitor Ribeiro dos
Nascimento, Mateus do
dc.subject.por.fl_str_mv Meteorológicas
Previsões
Sazonalidade
Modelo SARIMA.
Meteorological
Forecasts
Seasonality
Model SARIMA.
Meteorológico
Previsión
Estacionalidad
Modelo SARIMA.
topic Meteorológicas
Previsões
Sazonalidade
Modelo SARIMA.
Meteorological
Forecasts
Seasonality
Model SARIMA.
Meteorológico
Previsión
Estacionalidad
Modelo SARIMA.
description Precipitation is one of the most relevant meteorological variables for climate studies. Knowing its spatial and temporal variability allows planning various human activities, both from an economic and social point of view. Such importance is due to the consequences that it can cause, in excess or in lack, causing floods, floods, droughts, decrease in energy supply, low food production, among others. This study aimed to study the historical series of average monthly rainfall in the city of Lavras/MG in order to obtain a statistical model that allows predictions to be made. For this purpose, 228 observations were used corresponding to the period from January 2000 to December 2018 for this analysis, the existence of the trend and seasonality components was verified. The Box and Jenkins methodology was used to model the data. Some models were adjusted using the SARIMA class, as the series under study showed stochastic seasonality. The comparison between the models considered suitable for the series was performed using the NDE and AIC. The SARIMA (0,0,0) x (0,1,1)12 model was used to make predictions of future observations. The series of monthly average rainfall in the city of Lavras/MG presented a seasonal component with a periodicity of 12 months. The adjusted model obtained a very good result, since the 95% confidence intervals contained the twelve real values ​​of average monthly rainfall in the city of Lavras/MG for the year 2019, even in the face of unforeseen and uncertainties associated with climatic factors. The model in question can be used in decision making to carry out future strategic plans that involve public issues associated with the city of Lavras. These forecasts can also be used to assist the managers of the Funil/MG hydroelectric plant to schedule future water flow operations and maintenance properly, as it is close to the municipality of Lavras.
publishDate 2021
dc.date.none.fl_str_mv 2021-06-04
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/15643
10.33448/rsd-v10i6.15643
url https://rsdjournal.org/index.php/rsd/article/view/15643
identifier_str_mv 10.33448/rsd-v10i6.15643
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/15643/14254
dc.rights.driver.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Research, Society and Development
publisher.none.fl_str_mv Research, Society and Development
dc.source.none.fl_str_mv Research, Society and Development; Vol. 10 No. 6; e41810615643
Research, Society and Development; Vol. 10 Núm. 6; e41810615643
Research, Society and Development; v. 10 n. 6; e41810615643
2525-3409
reponame:Research, Society and Development
instname:Universidade Federal de Itajubá (UNIFEI)
instacron:UNIFEI
instname_str Universidade Federal de Itajubá (UNIFEI)
instacron_str UNIFEI
institution UNIFEI
reponame_str Research, Society and Development
collection Research, Society and Development
repository.name.fl_str_mv Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)
repository.mail.fl_str_mv rsd.articles@gmail.com
_version_ 1797052825175326720