Adjustment of a time series model to predict rainfall
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Research, Society and Development |
Texto Completo: | https://rsdjournal.org/index.php/rsd/article/view/15643 |
Resumo: | Precipitation is one of the most relevant meteorological variables for climate studies. Knowing its spatial and temporal variability allows planning various human activities, both from an economic and social point of view. Such importance is due to the consequences that it can cause, in excess or in lack, causing floods, floods, droughts, decrease in energy supply, low food production, among others. This study aimed to study the historical series of average monthly rainfall in the city of Lavras/MG in order to obtain a statistical model that allows predictions to be made. For this purpose, 228 observations were used corresponding to the period from January 2000 to December 2018 for this analysis, the existence of the trend and seasonality components was verified. The Box and Jenkins methodology was used to model the data. Some models were adjusted using the SARIMA class, as the series under study showed stochastic seasonality. The comparison between the models considered suitable for the series was performed using the NDE and AIC. The SARIMA (0,0,0) x (0,1,1)12 model was used to make predictions of future observations. The series of monthly average rainfall in the city of Lavras/MG presented a seasonal component with a periodicity of 12 months. The adjusted model obtained a very good result, since the 95% confidence intervals contained the twelve real values of average monthly rainfall in the city of Lavras/MG for the year 2019, even in the face of unforeseen and uncertainties associated with climatic factors. The model in question can be used in decision making to carry out future strategic plans that involve public issues associated with the city of Lavras. These forecasts can also be used to assist the managers of the Funil/MG hydroelectric plant to schedule future water flow operations and maintenance properly, as it is close to the municipality of Lavras. |
id |
UNIFEI_599b2f31bf83a62d3ed9d0b17e775fd0 |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/15643 |
network_acronym_str |
UNIFEI |
network_name_str |
Research, Society and Development |
repository_id_str |
|
spelling |
Adjustment of a time series model to predict rainfall Ajuste de un modelo de serie de tiempo para predecir la lluvia Ajuste de um modelo de séries temporais para prever a precipitação pluviométrica MeteorológicasPrevisõesSazonalidadeModelo SARIMA.MeteorologicalForecastsSeasonalityModel SARIMA.MeteorológicoPrevisiónEstacionalidadModelo SARIMA.Precipitation is one of the most relevant meteorological variables for climate studies. Knowing its spatial and temporal variability allows planning various human activities, both from an economic and social point of view. Such importance is due to the consequences that it can cause, in excess or in lack, causing floods, floods, droughts, decrease in energy supply, low food production, among others. This study aimed to study the historical series of average monthly rainfall in the city of Lavras/MG in order to obtain a statistical model that allows predictions to be made. For this purpose, 228 observations were used corresponding to the period from January 2000 to December 2018 for this analysis, the existence of the trend and seasonality components was verified. The Box and Jenkins methodology was used to model the data. Some models were adjusted using the SARIMA class, as the series under study showed stochastic seasonality. The comparison between the models considered suitable for the series was performed using the NDE and AIC. The SARIMA (0,0,0) x (0,1,1)12 model was used to make predictions of future observations. The series of monthly average rainfall in the city of Lavras/MG presented a seasonal component with a periodicity of 12 months. The adjusted model obtained a very good result, since the 95% confidence intervals contained the twelve real values of average monthly rainfall in the city of Lavras/MG for the year 2019, even in the face of unforeseen and uncertainties associated with climatic factors. The model in question can be used in decision making to carry out future strategic plans that involve public issues associated with the city of Lavras. These forecasts can also be used to assist the managers of the Funil/MG hydroelectric plant to schedule future water flow operations and maintenance properly, as it is close to the municipality of Lavras.La precipitación es una de las variables meteorológicas más relevantes para el estudio del clima. Conocer su variabilidad espacial y temporal permite planificar diversas actividades humanas, tanto desde el punto de vista económico como social. Dicha importancia se debe a las consecuencias que puede ocasionar, por exceso o por defecto, provocando inundaciones, riadas, sequías, disminución del suministro energético, baja producción de alimentos, entre otras. Este estudio tuvo como objetivo estudiar la serie histórica de la precipitación media mensual en la ciudad de Lavras/MG con el fin de obtener un modelo estadístico que permita realizar predicciones. Para ello, se utilizaron 228 observaciones correspondientes al período comprendido entre enero de 2000 y diciembre de 2018 Para este análisis, se verificó la existencia de los componentes de tendencia y estacionalidad. Se utilizó la metodología de Box y Jenkins para modelar los datos. Algunos modelos se ajustaron mediante la clase SARIMA, ya que la serie en estudio presentaba estacionalidad estocástica. La comparación entre los modelos considerados adecuados para la serie se realizó mediante el NDE y el AIC. Se utilizó el modelo SARIMA (0,0,0) x (0,1,1)12 para realizar las predicciones de las observaciones futuras. La serie de precipitaciones medias mensuales en la ciudad de Lavras/MG presentó una componente estacional con una periodicidad de 12 meses. El modelo ajustado obtuvo un muy buen resultado, ya que los intervalos de confianza del 95% contenían los doce valores reales de la precipitación media mensual en la ciudad de Lavras/MG para el año 2019, incluso ante imprevistos e incertidumbres asociadas a factores climáticos. El modelo en cuestión puede ser utilizado en la toma de decisiones para llevar a cabo futuros planes estratégicos que implican cuestiones públicas asociadas a la ciudad de Lavras. Estas previsiones también pueden utilizarse para ayudar a los gestores de la central hidroeléctrica de Funil/MG a programar adecuadamente las futuras operaciones de flujo de agua y su mantenimiento, ya que está cerca del municipio de Lavras.A precipitação pluviométrica é uma das variáveis meteorológicas mais relevantes para estudos climáticos. Conhecer sua variabilidade espacial e temporal permite planejar diversas atividades humanas, tanto do ponto de vista econômico quanto social. Tal importância deve-se às consequências que ela pode ocasionar, em excesso ou em falta, causando enchentes, inundações, secas, queda no fornecimento de energia, baixa produção de alimentos, entre outros. Este trabalho teve como objetivo estudar a série histórica de precipitação pluviométrica média mensal da cidade de Lavras/MG a fim de obter um modelo estatístico que permita realizar previsões, para isso utilizou-se 228 observações correspondente ao período de janeiro de 2000 a dezembro de 2018. Para esta análise, foi verificada a existência das componentes tendência e sazonalidade. A metodologia de Box e Jenkins foi utilizada na modelagem dos dados. Foram ajustados alguns modelos utilizando a classe SARIMA, pois a série em estudo apresentou sazonalidade estocástica. A comparação entre os modelos considerados adequados à série foi realizada através do EQM e AIC. O modelo SARIMA (0,0,0) x (0,1,1)12 foi utilizado para fazer previsões de observações futuras. A série de precipitação pluviométrica média mensal da cidade de Lavras/MG apresentou uma componente sazonal com periodicidade de 12 meses. O modelo ajustado obteve um resultado muito bom, pois os intervalos de confiança a 95% contiveram os doze valores reais de precipitação pluviométrica média mensal da cidade de Lavras/MG para o ano de 2019, mesmo diante dos imprevistos e incertezas associadas a fatores climáticos. O modelo em questão pode ser utilizado na tomada de decisões para a realização de planejamentos estratégicos futuros que envolvem questões públicas associadas à cidade de Lavras. Estas previsões também podem ser utilizadas para auxiliar os gestores da usina hidrelétrica do Funil/MG a programar operações e manutenções futuras da vazão de água de forma adequada, pois esta se encontra próxima ao município de Lavras.Research, Society and Development2021-06-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/1564310.33448/rsd-v10i6.15643Research, Society and Development; Vol. 10 No. 6; e41810615643Research, Society and Development; Vol. 10 Núm. 6; e41810615643Research, Society and Development; v. 10 n. 6; e418106156432525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIporhttps://rsdjournal.org/index.php/rsd/article/view/15643/14254Copyright (c) 2021 Pedro Henrique Alves Bittencourt Santos; Otávio Augusto dos Santos Delfino; Ricardo Vitor Ribeiro dos Santos; Mateus do Nascimentohttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessSantos, Pedro Henrique Alves Bittencourt Delfino, Otávio Augusto dos SantosSantos, Ricardo Vitor Ribeiro dos Nascimento, Mateus do2021-06-10T22:51:46Zoai:ojs.pkp.sfu.ca:article/15643Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:36:25.201834Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false |
dc.title.none.fl_str_mv |
Adjustment of a time series model to predict rainfall Ajuste de un modelo de serie de tiempo para predecir la lluvia Ajuste de um modelo de séries temporais para prever a precipitação pluviométrica |
title |
Adjustment of a time series model to predict rainfall |
spellingShingle |
Adjustment of a time series model to predict rainfall Santos, Pedro Henrique Alves Bittencourt Meteorológicas Previsões Sazonalidade Modelo SARIMA. Meteorological Forecasts Seasonality Model SARIMA. Meteorológico Previsión Estacionalidad Modelo SARIMA. |
title_short |
Adjustment of a time series model to predict rainfall |
title_full |
Adjustment of a time series model to predict rainfall |
title_fullStr |
Adjustment of a time series model to predict rainfall |
title_full_unstemmed |
Adjustment of a time series model to predict rainfall |
title_sort |
Adjustment of a time series model to predict rainfall |
author |
Santos, Pedro Henrique Alves Bittencourt |
author_facet |
Santos, Pedro Henrique Alves Bittencourt Delfino, Otávio Augusto dos Santos Santos, Ricardo Vitor Ribeiro dos Nascimento, Mateus do |
author_role |
author |
author2 |
Delfino, Otávio Augusto dos Santos Santos, Ricardo Vitor Ribeiro dos Nascimento, Mateus do |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Santos, Pedro Henrique Alves Bittencourt Delfino, Otávio Augusto dos Santos Santos, Ricardo Vitor Ribeiro dos Nascimento, Mateus do |
dc.subject.por.fl_str_mv |
Meteorológicas Previsões Sazonalidade Modelo SARIMA. Meteorological Forecasts Seasonality Model SARIMA. Meteorológico Previsión Estacionalidad Modelo SARIMA. |
topic |
Meteorológicas Previsões Sazonalidade Modelo SARIMA. Meteorological Forecasts Seasonality Model SARIMA. Meteorológico Previsión Estacionalidad Modelo SARIMA. |
description |
Precipitation is one of the most relevant meteorological variables for climate studies. Knowing its spatial and temporal variability allows planning various human activities, both from an economic and social point of view. Such importance is due to the consequences that it can cause, in excess or in lack, causing floods, floods, droughts, decrease in energy supply, low food production, among others. This study aimed to study the historical series of average monthly rainfall in the city of Lavras/MG in order to obtain a statistical model that allows predictions to be made. For this purpose, 228 observations were used corresponding to the period from January 2000 to December 2018 for this analysis, the existence of the trend and seasonality components was verified. The Box and Jenkins methodology was used to model the data. Some models were adjusted using the SARIMA class, as the series under study showed stochastic seasonality. The comparison between the models considered suitable for the series was performed using the NDE and AIC. The SARIMA (0,0,0) x (0,1,1)12 model was used to make predictions of future observations. The series of monthly average rainfall in the city of Lavras/MG presented a seasonal component with a periodicity of 12 months. The adjusted model obtained a very good result, since the 95% confidence intervals contained the twelve real values of average monthly rainfall in the city of Lavras/MG for the year 2019, even in the face of unforeseen and uncertainties associated with climatic factors. The model in question can be used in decision making to carry out future strategic plans that involve public issues associated with the city of Lavras. These forecasts can also be used to assist the managers of the Funil/MG hydroelectric plant to schedule future water flow operations and maintenance properly, as it is close to the municipality of Lavras. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-06-04 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/15643 10.33448/rsd-v10i6.15643 |
url |
https://rsdjournal.org/index.php/rsd/article/view/15643 |
identifier_str_mv |
10.33448/rsd-v10i6.15643 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/15643/14254 |
dc.rights.driver.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Research, Society and Development |
publisher.none.fl_str_mv |
Research, Society and Development |
dc.source.none.fl_str_mv |
Research, Society and Development; Vol. 10 No. 6; e41810615643 Research, Society and Development; Vol. 10 Núm. 6; e41810615643 Research, Society and Development; v. 10 n. 6; e41810615643 2525-3409 reponame:Research, Society and Development instname:Universidade Federal de Itajubá (UNIFEI) instacron:UNIFEI |
instname_str |
Universidade Federal de Itajubá (UNIFEI) |
instacron_str |
UNIFEI |
institution |
UNIFEI |
reponame_str |
Research, Society and Development |
collection |
Research, Society and Development |
repository.name.fl_str_mv |
Research, Society and Development - Universidade Federal de Itajubá (UNIFEI) |
repository.mail.fl_str_mv |
rsd.articles@gmail.com |
_version_ |
1797052825175326720 |