Micronization of the pesticide chlorothalonil with different ball types

Detalhes bibliográficos
Autor(a) principal: Rezende Neto, José de Freitas
Data de Publicação: 2021
Outros Autores: Silva, Antônio Manoel Batista da
Tipo de documento: Artigo
Idioma: por
Título da fonte: Research, Society and Development
Texto Completo: https://rsdjournal.org/index.php/rsd/article/view/19007
Resumo: To achieve micronization in micro and nanoparticle agitator mills are often used. Also used are balls for the grinding step, which are: glass balls, zirconium silicate balls and zirconium oxide balls. A suspension with the active ingredient chlorothalonil at 700 g/L was prepared, being 2 liters for each type of balls. For this, a 1 liter grinding chamber with 0.7 liters of balls was used. The rotation of the mill was set at 2000 rpm and the rotation of the feed pump at 250 rpm. In addition, the temperature of the product, before grinding, was 26°C.  The micronization with the glass balls during the process presented the lowest temperature 30°C, but with the lowest flow rate 0.09 L/min and the longest grinding time with 32 minutes. With zirconium silicate balls, the temperature reached was 38°C, the flow rate was 0.15 L/min and the grinding time was 20 minutes. The best result obtained was with the zirconium oxide balls, but with the highest temperature 42°C, but with the highest flow rate 0.19 L/min, and the shortest grinding time with 16 minutes, respectively. When determining the price of kWh consumed by the equipment when using the different types of balls, it was found that, with the zirconium oxide balls, a savings of up to 50% of the electricity consumption is achieved, compared to the use of glass balls. Comparing zirconium silicate balls with glass balls, a 37% savings in consumption is achieved. Finally, with zirconium oxide balls being compared to zirconium silicate, a 25% savings in electricity consumption was obtained.
id UNIFEI_617d2af8f188980be9026ee298508f66
oai_identifier_str oai:ojs.pkp.sfu.ca:article/19007
network_acronym_str UNIFEI
network_name_str Research, Society and Development
repository_id_str
spelling Micronization of the pesticide chlorothalonil with different ball types Micronización del plaguicida clorotalonil en diferentes tipos de esferas Micronização do pesticida clorotalonil em diferentes tipos de esferas MicronizationBall typeMicroparticles and nanoparticlesOptimal particle size.MicronizaciónTipo de esferasMicropartículas y nanopartículasTamaño de partícula óptimo.MicronizaçãoTipo de esferasMicropartículas e nanopartículasTamanho de partícula ideal.To achieve micronization in micro and nanoparticle agitator mills are often used. Also used are balls for the grinding step, which are: glass balls, zirconium silicate balls and zirconium oxide balls. A suspension with the active ingredient chlorothalonil at 700 g/L was prepared, being 2 liters for each type of balls. For this, a 1 liter grinding chamber with 0.7 liters of balls was used. The rotation of the mill was set at 2000 rpm and the rotation of the feed pump at 250 rpm. In addition, the temperature of the product, before grinding, was 26°C.  The micronization with the glass balls during the process presented the lowest temperature 30°C, but with the lowest flow rate 0.09 L/min and the longest grinding time with 32 minutes. With zirconium silicate balls, the temperature reached was 38°C, the flow rate was 0.15 L/min and the grinding time was 20 minutes. The best result obtained was with the zirconium oxide balls, but with the highest temperature 42°C, but with the highest flow rate 0.19 L/min, and the shortest grinding time with 16 minutes, respectively. When determining the price of kWh consumed by the equipment when using the different types of balls, it was found that, with the zirconium oxide balls, a savings of up to 50% of the electricity consumption is achieved, compared to the use of glass balls. Comparing zirconium silicate balls with glass balls, a 37% savings in consumption is achieved. Finally, with zirconium oxide balls being compared to zirconium silicate, a 25% savings in electricity consumption was obtained.Para lograr la micronización en micro y nanopartículas se utilizan a menudo molinos agitadores. También se utilizan esferas para la etapa de molienda, que son: esferas de vidrio, esferas de silicato de circonio y esferas de óxido de circonio. Se preparó una suspensión con el principio activo clorotalonil a 700 g/L, siendo de 2 litros para cada tipo de esferas. Para ello, se utilizó una cámara de molienda de 1 litro con 0,7 litros de bolas. La rotación del molino se fijó en 2000 rpm y la rotación de la bomba de alimentación en 250 rpm. Además, la temperatura del producto, antes de moler, era de 26°C.  La micronización con las esferas de vidrio durante el proceso presentó la temperatura más baja 30°C, pero con el caudal más bajo 0.09 L/min y el tiempo de molienda más largo con 32 minutos. Con las esferas de silicato de circonio, la temperatura alcanzada fue de 38°C, el caudal fue de 0,15 L/min y el tiempo de molienda fue de 20 minutos. El mejor resultado obtenido fue con las esferas de óxido de circonio, pero con la temperatura más alta 42°C, pero con el caudal más alto 0.19 L/min, y el menor tiempo de molienda con 16 minutos, respectivamente. Al determinar el precio de los kWh consumidos por los equipos al utilizar los diferentes tipos de esferas, se encontró que, con las esferas de óxido de circonio, se consigue un ahorro de hasta el 50% del consumo eléctrico, en comparación con el uso de esferas de vidrio. Comparando las esferas de silicato de circonio con las esferas de vidrio, se consigue un ahorro del 37% en el consumo. Finalmente, con la comparación de las esferas de óxido de circonio con el silicato de circonio, se obtuvo un ahorro del 25% en el consumo de electricidad.Para alcançar a micronização em micro e nanopartículas moinhos agitadores são frequentemente utilizados. Também são utilizadas esferas para a etapa de moagem, que são: esferas de vidro, esferas de silicato de zircônio e esferas de óxido de zircônio. Uma suspenção com o ingrediente ativo clorotalonil em 700 g/L foi preparada, sendo 2 litros para cada tipo de esferas. Para isso, foi utilizada uma câmara de moagem de 1 litro, com 0,7 litros de esferas. A rotação do moinho foi setada em 2000 rpm e a rotação da bomba de alimentação a 250 rpm. Ademais, a temperatura do produto, antes da moagem, era de 26°C. A micronização com as esferas de vidro durante o processo, apresentou a menor temperatura 30°C, porém com a menor vazão 0,09 L/min e maior tempo de moagem com 32 minutos. Já com as esferas de silicato de zircônio, a temperatura atingida foi de 38°C, a vazão foi de 0,15 L/min e o tempo de moagem foi de 20 minutos. O melhor resultado obtido foi com as esferas de óxido de zircônio, porém com a maior temperatura 42°C, mas com a maior vazão 0,19 L/min, e o menor tempo de moagem com 16 minutos, respectivamente. Ao determinar o preço do kWh consumido pelo equipamento ao usar os diferentes tipos de esferas foi auferido que, com as esferas de óxido de zircônio, alcança-se uma economia de até 50% do consumo de energia elétrica, em comparação com uso das esferas de vidro. Já comparando as esferas de silicato de zircônio com as esferas de vidro consegue-se uma economia de 37% no consumo. Por fim, com as esferas de óxido de zircônio sendo confrontadas as de silicato de zircônio obteve-se uma economia de 25% no consumo de energia elétrica.Research, Society and Development2021-08-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/1900710.33448/rsd-v10i10.19007Research, Society and Development; Vol. 10 No. 10; e417101019007Research, Society and Development; Vol. 10 Núm. 10; e417101019007Research, Society and Development; v. 10 n. 10; e4171010190072525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIporhttps://rsdjournal.org/index.php/rsd/article/view/19007/16995Copyright (c) 2021 José de Freitas Rezende Neto; Antônio Manoel Batista da Silvahttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessRezende Neto, José de FreitasSilva, Antônio Manoel Batista da2021-10-02T21:49:16Zoai:ojs.pkp.sfu.ca:article/19007Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:39:00.340853Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false
dc.title.none.fl_str_mv Micronization of the pesticide chlorothalonil with different ball types
Micronización del plaguicida clorotalonil en diferentes tipos de esferas
Micronização do pesticida clorotalonil em diferentes tipos de esferas
title Micronization of the pesticide chlorothalonil with different ball types
spellingShingle Micronization of the pesticide chlorothalonil with different ball types
Rezende Neto, José de Freitas
Micronization
Ball type
Microparticles and nanoparticles
Optimal particle size.
Micronización
Tipo de esferas
Micropartículas y nanopartículas
Tamaño de partícula óptimo.
Micronização
Tipo de esferas
Micropartículas e nanopartículas
Tamanho de partícula ideal.
title_short Micronization of the pesticide chlorothalonil with different ball types
title_full Micronization of the pesticide chlorothalonil with different ball types
title_fullStr Micronization of the pesticide chlorothalonil with different ball types
title_full_unstemmed Micronization of the pesticide chlorothalonil with different ball types
title_sort Micronization of the pesticide chlorothalonil with different ball types
author Rezende Neto, José de Freitas
author_facet Rezende Neto, José de Freitas
Silva, Antônio Manoel Batista da
author_role author
author2 Silva, Antônio Manoel Batista da
author2_role author
dc.contributor.author.fl_str_mv Rezende Neto, José de Freitas
Silva, Antônio Manoel Batista da
dc.subject.por.fl_str_mv Micronization
Ball type
Microparticles and nanoparticles
Optimal particle size.
Micronización
Tipo de esferas
Micropartículas y nanopartículas
Tamaño de partícula óptimo.
Micronização
Tipo de esferas
Micropartículas e nanopartículas
Tamanho de partícula ideal.
topic Micronization
Ball type
Microparticles and nanoparticles
Optimal particle size.
Micronización
Tipo de esferas
Micropartículas y nanopartículas
Tamaño de partícula óptimo.
Micronização
Tipo de esferas
Micropartículas e nanopartículas
Tamanho de partícula ideal.
description To achieve micronization in micro and nanoparticle agitator mills are often used. Also used are balls for the grinding step, which are: glass balls, zirconium silicate balls and zirconium oxide balls. A suspension with the active ingredient chlorothalonil at 700 g/L was prepared, being 2 liters for each type of balls. For this, a 1 liter grinding chamber with 0.7 liters of balls was used. The rotation of the mill was set at 2000 rpm and the rotation of the feed pump at 250 rpm. In addition, the temperature of the product, before grinding, was 26°C.  The micronization with the glass balls during the process presented the lowest temperature 30°C, but with the lowest flow rate 0.09 L/min and the longest grinding time with 32 minutes. With zirconium silicate balls, the temperature reached was 38°C, the flow rate was 0.15 L/min and the grinding time was 20 minutes. The best result obtained was with the zirconium oxide balls, but with the highest temperature 42°C, but with the highest flow rate 0.19 L/min, and the shortest grinding time with 16 minutes, respectively. When determining the price of kWh consumed by the equipment when using the different types of balls, it was found that, with the zirconium oxide balls, a savings of up to 50% of the electricity consumption is achieved, compared to the use of glass balls. Comparing zirconium silicate balls with glass balls, a 37% savings in consumption is achieved. Finally, with zirconium oxide balls being compared to zirconium silicate, a 25% savings in electricity consumption was obtained.
publishDate 2021
dc.date.none.fl_str_mv 2021-08-15
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/19007
10.33448/rsd-v10i10.19007
url https://rsdjournal.org/index.php/rsd/article/view/19007
identifier_str_mv 10.33448/rsd-v10i10.19007
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/19007/16995
dc.rights.driver.fl_str_mv Copyright (c) 2021 José de Freitas Rezende Neto; Antônio Manoel Batista da Silva
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2021 José de Freitas Rezende Neto; Antônio Manoel Batista da Silva
https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Research, Society and Development
publisher.none.fl_str_mv Research, Society and Development
dc.source.none.fl_str_mv Research, Society and Development; Vol. 10 No. 10; e417101019007
Research, Society and Development; Vol. 10 Núm. 10; e417101019007
Research, Society and Development; v. 10 n. 10; e417101019007
2525-3409
reponame:Research, Society and Development
instname:Universidade Federal de Itajubá (UNIFEI)
instacron:UNIFEI
instname_str Universidade Federal de Itajubá (UNIFEI)
instacron_str UNIFEI
institution UNIFEI
reponame_str Research, Society and Development
collection Research, Society and Development
repository.name.fl_str_mv Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)
repository.mail.fl_str_mv rsd.articles@gmail.com
_version_ 1797052753783029760