Spatial modeling of income inequality and population aging in Brazil

Detalhes bibliográficos
Autor(a) principal: Duque, Andrezza Marques
Data de Publicação: 2021
Outros Autores: Peixoto, Marcus Valerius da Silva, Lima, Shirley Verônica Melo Almeida, Santos, Allan Dantas dos, Ribeiro, Caique Jordan Nunes, Costa, Julia Guimarães Reis da, Góes, Marco Aurélio de Oliveira, Araújo, Karina Conceição Gomes Machado de, Nunes, Marco Antônio Prado
Tipo de documento: Artigo
Idioma: por
Título da fonte: Research, Society and Development
Texto Completo: https://rsdjournal.org/index.php/rsd/article/view/16433
Resumo: Objective: To analyze the spatial dynamics of income inequality and its relationship with population aging in Brazil. Method: A population-based ecological study using spatial analysis techniques and data from the last two Brazilian Demographic Census. Spatial modeling presented the Global Moran Index (I) and Local Spatial Association Index (LISA) through spatial autocorrelation, and the correlation between income inequality, life expectancy, and aging rate. Results: We observed significant spatial autocorrelation of income inequality (I=0.284, I=0.462; p=0.001), life expectancy (I=0.560, I=0.352; p=0.001), and aging rate (I=0.663, I=0.646; p=0.001). Predominant clusters were found in the North, Northeast, and Southern regions of the country. Clusters from the North and Northeast regions were associated with higher inequalities and lower indicators of aging. There was an inverse spatial correlation between income inequality, life expectancy, and aging rate. Conclusion: Population aging in Brazil presents a non-random distribution revealing spatial correlations with income inequality. Given the social and economic disparities across Brazilian territory, spatial analysis proved to be a significant contribution to the formulation of public policies that respect locoregional peculiarities.
id UNIFEI_61c890945ac9f240e0eee36554349bd4
oai_identifier_str oai:ojs.pkp.sfu.ca:article/16433
network_acronym_str UNIFEI
network_name_str Research, Society and Development
repository_id_str
spelling Spatial modeling of income inequality and population aging in BrazilModelación espacial de la desigualdad de ingresos y el envejecimiento de la población en BrasilModelagem espacial da desigualdade de renda e envelhecimento populacional no BrasilInequalitySocial determinants of healthAgingGeographic information systemsSpatial analysis.DesigualdadDeterminantes sociales de la saludEnvejecimientoSistemas de información geográficaAnálisis espacial.DesigualdadeDeterminantes sociais da saúdeEnvelhecimentoSistemas de informação geográficaAnálise espacial.Objective: To analyze the spatial dynamics of income inequality and its relationship with population aging in Brazil. Method: A population-based ecological study using spatial analysis techniques and data from the last two Brazilian Demographic Census. Spatial modeling presented the Global Moran Index (I) and Local Spatial Association Index (LISA) through spatial autocorrelation, and the correlation between income inequality, life expectancy, and aging rate. Results: We observed significant spatial autocorrelation of income inequality (I=0.284, I=0.462; p=0.001), life expectancy (I=0.560, I=0.352; p=0.001), and aging rate (I=0.663, I=0.646; p=0.001). Predominant clusters were found in the North, Northeast, and Southern regions of the country. Clusters from the North and Northeast regions were associated with higher inequalities and lower indicators of aging. There was an inverse spatial correlation between income inequality, life expectancy, and aging rate. Conclusion: Population aging in Brazil presents a non-random distribution revealing spatial correlations with income inequality. Given the social and economic disparities across Brazilian territory, spatial analysis proved to be a significant contribution to the formulation of public policies that respect locoregional peculiarities.Objetivo: Analizar la dinámica espacial de la desigualdad de ingresos y su relación con el envejecimiento de la población en Brasil. Método: Estudio ecológico de base poblacional utilizando técnicas de análisis espacial y datos de los dos últimos Censos Demográficos Brasileños. El modelado espacial presentó el Índice de Moran Global (I) y el Índice de Asociación Espacial Local (LISA) a través de la autocorrelación espacial y la correlación entre la desigualdad de ingresos, la esperanza de vida y la tasa de envejecimiento. Resultados: Observamos una autocorrelación espacial significativa de la desigualdad de ingresos (I=0,284, I=0,462; p=0,001), la esperanza de vida (I=0,560, I=0,352; p=0,001) y la tasa de envejecimiento (I=0,693, I=0,646; p=0,001). Los conglomerados predominantes se encuentran en las regiones Norte, Nordeste y Sur del país. Los conglomerados de las regiones Norte y Nordeste se asociaron con una mayor desigualdad y menores indicadores de envejecimiento. Hubo una correlación espacial inversa entre la desigualdad de ingresos, la esperanza de vida y la tasa de envejecimiento. Conclusión: El envejecimiento de la población en Brasil tiene una distribución no aleatoria que revela correlaciones espaciales con la desigualdad de ingresos. Dadas las disparidades sociales y económicas existentes en el territorio brasileño, el análisis espacial resultó ser una contribución significativa a la formulación de políticas públicas que respeten las peculiaridades locorregionales.Objetivo: Analisar a dinâmica espacial da desigualdade de renda e sua relação com o envelhecimento populacional no Brasil. Método: Estudo ecológico de base populacional utilizando técnicas de análise espacial e dados dois últimos Censos Demográficos Brasileiros. A modelagem espacial apresentou o Índice de Moran Global (I) e o Índice de Associação Espacial Local (LISA) através da autocorrelação espacial e correlação entre a desigualdade de renda, expectativa de vida e taxa de envelhecimento. Resultados: Observamos autocorrelação espacial significativa da desigualdade de renda (I=0,284; I=0,462; p=0,001), expectativa de vida (I=0,560; I=0,352; p=0,001) e taxa de envelhecimento (I=0,663; I=0,646; p=0,001). Os conglomerados predominantes foram encontrados nas regiões Norte, Nordeste e Sul do país. Os clusters das regiões Norte e Nordeste estiveram associados a maiores desigualdades e menores indicadores de envelhecimento. Houve uma correlação espacial inversa entre desigualdade de renda, expectativa de vida e taxa de envelhecimento. Conclusão: O envelhecimento populacional no Brasil apresenta uma distribuição não aleatória revelando correlações espaciais com a desigualdade de renda. Dadas as disparidades sociais e econômicas existentes no território brasileiro, a análise espacial mostrou-se um contributo significativo para a formulação de políticas públicas que respeitem as peculiaridades locorregionais.Research, Society and Development2021-06-14info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/1643310.33448/rsd-v10i7.16433Research, Society and Development; Vol. 10 No. 7; e8010716433Research, Society and Development; Vol. 10 Núm. 7; e8010716433Research, Society and Development; v. 10 n. 7; e80107164332525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIporhttps://rsdjournal.org/index.php/rsd/article/view/16433/14559Copyright (c) 2021 Andrezza Marques Duque; Marcus Valerius da Silva Peixoto; Shirley Verônica Melo Almeida Lima; Allan Dantas dos Santos; Caique Jordan Nunes Ribeiro; Julia Guimarães Reis da Costa; Marco Aurélio de Oliveira Góes; Karina Conceição Gomes Machado de Araújo; Marco Antônio Prado Nuneshttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccess Duque, Andrezza Marques Peixoto, Marcus Valerius da Silva Lima, Shirley Verônica Melo AlmeidaSantos, Allan Dantas dosRibeiro, Caique Jordan NunesCosta, Julia Guimarães Reis daGóes, Marco Aurélio de OliveiraAraújo, Karina Conceição Gomes Machado deNunes, Marco Antônio Prado2021-07-18T21:07:03Zoai:ojs.pkp.sfu.ca:article/16433Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:36:59.087326Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false
dc.title.none.fl_str_mv Spatial modeling of income inequality and population aging in Brazil
Modelación espacial de la desigualdad de ingresos y el envejecimiento de la población en Brasil
Modelagem espacial da desigualdade de renda e envelhecimento populacional no Brasil
title Spatial modeling of income inequality and population aging in Brazil
spellingShingle Spatial modeling of income inequality and population aging in Brazil
Duque, Andrezza Marques
Inequality
Social determinants of health
Aging
Geographic information systems
Spatial analysis.
Desigualdad
Determinantes sociales de la salud
Envejecimiento
Sistemas de información geográfica
Análisis espacial.
Desigualdade
Determinantes sociais da saúde
Envelhecimento
Sistemas de informação geográfica
Análise espacial.
title_short Spatial modeling of income inequality and population aging in Brazil
title_full Spatial modeling of income inequality and population aging in Brazil
title_fullStr Spatial modeling of income inequality and population aging in Brazil
title_full_unstemmed Spatial modeling of income inequality and population aging in Brazil
title_sort Spatial modeling of income inequality and population aging in Brazil
author Duque, Andrezza Marques
author_facet Duque, Andrezza Marques
Peixoto, Marcus Valerius da Silva
Lima, Shirley Verônica Melo Almeida
Santos, Allan Dantas dos
Ribeiro, Caique Jordan Nunes
Costa, Julia Guimarães Reis da
Góes, Marco Aurélio de Oliveira
Araújo, Karina Conceição Gomes Machado de
Nunes, Marco Antônio Prado
author_role author
author2 Peixoto, Marcus Valerius da Silva
Lima, Shirley Verônica Melo Almeida
Santos, Allan Dantas dos
Ribeiro, Caique Jordan Nunes
Costa, Julia Guimarães Reis da
Góes, Marco Aurélio de Oliveira
Araújo, Karina Conceição Gomes Machado de
Nunes, Marco Antônio Prado
author2_role author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Duque, Andrezza Marques
Peixoto, Marcus Valerius da Silva
Lima, Shirley Verônica Melo Almeida
Santos, Allan Dantas dos
Ribeiro, Caique Jordan Nunes
Costa, Julia Guimarães Reis da
Góes, Marco Aurélio de Oliveira
Araújo, Karina Conceição Gomes Machado de
Nunes, Marco Antônio Prado
dc.subject.por.fl_str_mv Inequality
Social determinants of health
Aging
Geographic information systems
Spatial analysis.
Desigualdad
Determinantes sociales de la salud
Envejecimiento
Sistemas de información geográfica
Análisis espacial.
Desigualdade
Determinantes sociais da saúde
Envelhecimento
Sistemas de informação geográfica
Análise espacial.
topic Inequality
Social determinants of health
Aging
Geographic information systems
Spatial analysis.
Desigualdad
Determinantes sociales de la salud
Envejecimiento
Sistemas de información geográfica
Análisis espacial.
Desigualdade
Determinantes sociais da saúde
Envelhecimento
Sistemas de informação geográfica
Análise espacial.
description Objective: To analyze the spatial dynamics of income inequality and its relationship with population aging in Brazil. Method: A population-based ecological study using spatial analysis techniques and data from the last two Brazilian Demographic Census. Spatial modeling presented the Global Moran Index (I) and Local Spatial Association Index (LISA) through spatial autocorrelation, and the correlation between income inequality, life expectancy, and aging rate. Results: We observed significant spatial autocorrelation of income inequality (I=0.284, I=0.462; p=0.001), life expectancy (I=0.560, I=0.352; p=0.001), and aging rate (I=0.663, I=0.646; p=0.001). Predominant clusters were found in the North, Northeast, and Southern regions of the country. Clusters from the North and Northeast regions were associated with higher inequalities and lower indicators of aging. There was an inverse spatial correlation between income inequality, life expectancy, and aging rate. Conclusion: Population aging in Brazil presents a non-random distribution revealing spatial correlations with income inequality. Given the social and economic disparities across Brazilian territory, spatial analysis proved to be a significant contribution to the formulation of public policies that respect locoregional peculiarities.
publishDate 2021
dc.date.none.fl_str_mv 2021-06-14
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/16433
10.33448/rsd-v10i7.16433
url https://rsdjournal.org/index.php/rsd/article/view/16433
identifier_str_mv 10.33448/rsd-v10i7.16433
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/16433/14559
dc.rights.driver.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Research, Society and Development
publisher.none.fl_str_mv Research, Society and Development
dc.source.none.fl_str_mv Research, Society and Development; Vol. 10 No. 7; e8010716433
Research, Society and Development; Vol. 10 Núm. 7; e8010716433
Research, Society and Development; v. 10 n. 7; e8010716433
2525-3409
reponame:Research, Society and Development
instname:Universidade Federal de Itajubá (UNIFEI)
instacron:UNIFEI
instname_str Universidade Federal de Itajubá (UNIFEI)
instacron_str UNIFEI
institution UNIFEI
reponame_str Research, Society and Development
collection Research, Society and Development
repository.name.fl_str_mv Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)
repository.mail.fl_str_mv rsd.articles@gmail.com
_version_ 1797052750663516160