Multifractal analysis of standardize precipitation index
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Research, Society and Development |
Texto Completo: | https://rsdjournal.org/index.php/rsd/article/view/16535 |
Resumo: | In many tropical countries including Brazil it has been observed that changes in rainfall patterns cause severe floods and with a tendency to continue to worsen during the 21st century. In order to reduce the consequences on human life and health, economic activities, ecosystems and infrastructure with efficient protection measures in mind, it is necessary to develop the most reliable forecasting models. The first step in this direction is a detailed analysis of the climatic variability in the region. In this work, we analyze the multifractal properties of the time series of Standardized Precipitation Index (SPI) developed to classify dry/wet conditions according to severity. This index was calculated for different time scales (1,3,6 and 12 months) and analyzed using the Multifractal detrended fluctuation analysis method. The multifractal spectrum complexity parameters (position of maximum, width and asymmetry) together with Hurst's exponent showed that the SPI series are generated by the multifractal process with stronger multifractality and stronger persistence for larger scales of rainfall accumulation. |
id |
UNIFEI_6b514b0bd51a1dc3e1247eb88c433e80 |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/16535 |
network_acronym_str |
UNIFEI |
network_name_str |
Research, Society and Development |
repository_id_str |
|
spelling |
Multifractal analysis of standardize precipitation indexAnálisis multifractal del índice de precipitación estandarizadoAnálise multifractal do índice de precipitação padronizadoMultrifactalPrecipitationSPIPernambuco.MultifractalPrecipitaciónSPIPernambuco.MultrifactalPrecipitaçãoSPIPernambuco.In many tropical countries including Brazil it has been observed that changes in rainfall patterns cause severe floods and with a tendency to continue to worsen during the 21st century. In order to reduce the consequences on human life and health, economic activities, ecosystems and infrastructure with efficient protection measures in mind, it is necessary to develop the most reliable forecasting models. The first step in this direction is a detailed analysis of the climatic variability in the region. In this work, we analyze the multifractal properties of the time series of Standardized Precipitation Index (SPI) developed to classify dry/wet conditions according to severity. This index was calculated for different time scales (1,3,6 and 12 months) and analyzed using the Multifractal detrended fluctuation analysis method. The multifractal spectrum complexity parameters (position of maximum, width and asymmetry) together with Hurst's exponent showed that the SPI series are generated by the multifractal process with stronger multifractality and stronger persistence for larger scales of rainfall accumulation.En muchos países tropicales, incluido Brasil, se ha observado que los cambios en los patrones de lluvia provocan graves inundaciones y sequías con una tendencia a seguir empeorando durante el siglo XXI. Para reducir las consecuencias sobre la vida y la salud humana, las actividades económicas, los ecosistemas y la infraestructura, teniendo en cuenta las medidas de protección eficientes, es necesario desarrollar los modelos de predicción más fiables. El primer paso en esta dirección es un análisis detallado de la variabilidad climática en la región estudiada. En este trabajo, analizamos las propiedades multifractivas de la serie temporal del índice de precipitación estándarizado - SPI desarrollado para clasificar las condiciones secas/húmedas según la severidad. Este índice se calculó para diferentes escalas de tiempo (1, 3, 6 y 12 meses) y se analizó mediante el método de Multifractal detrended fluctuation analysis. Los parámetros de complejidad del espectro multifractal (posición de máxima, ancho y asimetría) junto con el exponente de Hurst mostraron que las series SPI son generadas por el proceso multifractal con multifractalidad y persistencia más fuerte para escalas más grandes de acumulación de lluvia.Em muitos países tropicais incluindo Brasil observou-se que as mudanças nos padrões de chuva causam inundações e secas com tendência a continuar se agravar durante século 21. Para diminuir as consequências na vida e saúde humana, atividades econômicas, ecossistemas e infraestrutura é necessário desenvolver modelos de previsão mais confiáveis. O primeiro passo nesta direção é uma análise detalhada da variabilidade climática na região estudada. Neste trabalho analisou-se propriedades multifractais das séries temporais do Índice de Precipitação Padronizado (SPI), desenvolvido para classificar condições secas/úmidas de acordo com severidade. Este índice foi calculado para diferentes escalas de tempo (1, 3, 6 e 12 meses) e analisado utilizando o método Multifractal detrended fluctuation analysis. Os parâmetros de complexidade do espectro multifractal (posição de máximo, largura e assimetria) junto com o expoente de Hurst, mostraram que as séries de SPI são geradas pelo processo multifractal com multifractalidade e persistência mais forte para maiores escalas de acumulação da chuva.Research, Society and Development2021-06-20info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/1653510.33448/rsd-v10i7.16535Research, Society and Development; Vol. 10 No. 7; e24710716535Research, Society and Development; Vol. 10 Núm. 7; e24710716535Research, Society and Development; v. 10 n. 7; e247107165352525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIporhttps://rsdjournal.org/index.php/rsd/article/view/16535/14752Copyright (c) 2021 Antonio Samuel Alves da Silva; Rômulo Simões Cezar Menezes; Tatijana Stosichttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessSilva, Antonio Samuel Alves daMenezes, Rômulo Simões CezarStosic, Tatijana2021-07-18T21:07:03Zoai:ojs.pkp.sfu.ca:article/16535Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:37:03.651714Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false |
dc.title.none.fl_str_mv |
Multifractal analysis of standardize precipitation index Análisis multifractal del índice de precipitación estandarizado Análise multifractal do índice de precipitação padronizado |
title |
Multifractal analysis of standardize precipitation index |
spellingShingle |
Multifractal analysis of standardize precipitation index Silva, Antonio Samuel Alves da Multrifactal Precipitation SPI Pernambuco. Multifractal Precipitación SPI Pernambuco. Multrifactal Precipitação SPI Pernambuco. |
title_short |
Multifractal analysis of standardize precipitation index |
title_full |
Multifractal analysis of standardize precipitation index |
title_fullStr |
Multifractal analysis of standardize precipitation index |
title_full_unstemmed |
Multifractal analysis of standardize precipitation index |
title_sort |
Multifractal analysis of standardize precipitation index |
author |
Silva, Antonio Samuel Alves da |
author_facet |
Silva, Antonio Samuel Alves da Menezes, Rômulo Simões Cezar Stosic, Tatijana |
author_role |
author |
author2 |
Menezes, Rômulo Simões Cezar Stosic, Tatijana |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Silva, Antonio Samuel Alves da Menezes, Rômulo Simões Cezar Stosic, Tatijana |
dc.subject.por.fl_str_mv |
Multrifactal Precipitation SPI Pernambuco. Multifractal Precipitación SPI Pernambuco. Multrifactal Precipitação SPI Pernambuco. |
topic |
Multrifactal Precipitation SPI Pernambuco. Multifractal Precipitación SPI Pernambuco. Multrifactal Precipitação SPI Pernambuco. |
description |
In many tropical countries including Brazil it has been observed that changes in rainfall patterns cause severe floods and with a tendency to continue to worsen during the 21st century. In order to reduce the consequences on human life and health, economic activities, ecosystems and infrastructure with efficient protection measures in mind, it is necessary to develop the most reliable forecasting models. The first step in this direction is a detailed analysis of the climatic variability in the region. In this work, we analyze the multifractal properties of the time series of Standardized Precipitation Index (SPI) developed to classify dry/wet conditions according to severity. This index was calculated for different time scales (1,3,6 and 12 months) and analyzed using the Multifractal detrended fluctuation analysis method. The multifractal spectrum complexity parameters (position of maximum, width and asymmetry) together with Hurst's exponent showed that the SPI series are generated by the multifractal process with stronger multifractality and stronger persistence for larger scales of rainfall accumulation. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-06-20 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/16535 10.33448/rsd-v10i7.16535 |
url |
https://rsdjournal.org/index.php/rsd/article/view/16535 |
identifier_str_mv |
10.33448/rsd-v10i7.16535 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/16535/14752 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2021 Antonio Samuel Alves da Silva; Rômulo Simões Cezar Menezes; Tatijana Stosic https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2021 Antonio Samuel Alves da Silva; Rômulo Simões Cezar Menezes; Tatijana Stosic https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Research, Society and Development |
publisher.none.fl_str_mv |
Research, Society and Development |
dc.source.none.fl_str_mv |
Research, Society and Development; Vol. 10 No. 7; e24710716535 Research, Society and Development; Vol. 10 Núm. 7; e24710716535 Research, Society and Development; v. 10 n. 7; e24710716535 2525-3409 reponame:Research, Society and Development instname:Universidade Federal de Itajubá (UNIFEI) instacron:UNIFEI |
instname_str |
Universidade Federal de Itajubá (UNIFEI) |
instacron_str |
UNIFEI |
institution |
UNIFEI |
reponame_str |
Research, Society and Development |
collection |
Research, Society and Development |
repository.name.fl_str_mv |
Research, Society and Development - Universidade Federal de Itajubá (UNIFEI) |
repository.mail.fl_str_mv |
rsd.articles@gmail.com |
_version_ |
1797052680280997888 |