Study of the flocculation kinetics of fish processing wastewater using a phenomenological model and machine learning techniques
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Research, Society and Development |
DOI: | 10.33448/rsd-v11i11.33976 |
Texto Completo: | https://rsdjournal.org/index.php/rsd/article/view/33976 |
Resumo: | The coagulation/flocculation process is a widely used technique typically applied to solid-liquid separation for wastewater treatment, based on the principle of destabilization of colloidal particles in suspension, followed by the aggregation of these particles into structured flocs. In this process, the flocculation kinetics (velocity and time) plays a key role in the treatment performance, as it interferes with the flocs rupture and formation. Therefore, for the treatment of fish-processing wastewater, two coagulants (natural: Tanfloc SH®; inorganic: Ferric Chloride) were evaluated in the flocculation kinetics and the experimental data modeling was performed using a phenomenological and artificial neural networks (ANNs) model. For this purpose, different velocity gradients and slow-mixing times were used in jar test experiments for each coagulant, and the aggregation (KA) and rupture (KB) coefficients of the formed flocs were determined. The most effective slow-mixing conditions (velocity and time) obtained for the effluent flocculation step were 16 s-1 and 20 min for the Tanfloc SH® coagulant and 24 s-1 and 30 min for the Ferric Chloride coagulant. The flocculation kinetic data were submitted to programming in ANNs using Python Software and to computational numerical iteration procedures using the Solver tool of the Microsoft Excel® program. Both models were able to adequately represent the flocculation kinetic experimental data, highlighting the ANNs as an alternative modeling tool to the mathematical models conventionally used. |
id |
UNIFEI_6f03e71fbdafea5e9197dd4a6ac752ab |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/33976 |
network_acronym_str |
UNIFEI |
network_name_str |
Research, Society and Development |
spelling |
Study of the flocculation kinetics of fish processing wastewater using a phenomenological model and machine learning techniquesEstudio de la cinética de floculación de aguas de matadero de pescado mediante un modelo fenomenológico y técnicas de aprendizaje automáticoEstudo da cinética de floculação de águas de frigorífico de peixes utilizando um modelo fenomenológico e técnicas de aprendizado de máquinaGradiente de velocidadeCinética de floculaçãoModelagemRedes neurais artificiais.Gradiente de velocidadCinética de floculaciónModeladoRedes neuronales artificiales.Velocity gradientFlocculation kineticsModelingArtificial neural networks.The coagulation/flocculation process is a widely used technique typically applied to solid-liquid separation for wastewater treatment, based on the principle of destabilization of colloidal particles in suspension, followed by the aggregation of these particles into structured flocs. In this process, the flocculation kinetics (velocity and time) plays a key role in the treatment performance, as it interferes with the flocs rupture and formation. Therefore, for the treatment of fish-processing wastewater, two coagulants (natural: Tanfloc SH®; inorganic: Ferric Chloride) were evaluated in the flocculation kinetics and the experimental data modeling was performed using a phenomenological and artificial neural networks (ANNs) model. For this purpose, different velocity gradients and slow-mixing times were used in jar test experiments for each coagulant, and the aggregation (KA) and rupture (KB) coefficients of the formed flocs were determined. The most effective slow-mixing conditions (velocity and time) obtained for the effluent flocculation step were 16 s-1 and 20 min for the Tanfloc SH® coagulant and 24 s-1 and 30 min for the Ferric Chloride coagulant. The flocculation kinetic data were submitted to programming in ANNs using Python Software and to computational numerical iteration procedures using the Solver tool of the Microsoft Excel® program. Both models were able to adequately represent the flocculation kinetic experimental data, highlighting the ANNs as an alternative modeling tool to the mathematical models conventionally used.El proceso de coagulación/floculación es una de las técnicas más utilizadas para promover la separación sólido-líquido del efluente, basado en el principio de desestabilización de partículas coloidales y suspendidas, seguida de la agregación y estructuración de estas partículas en flóculos. En este proceso, la cinética de floculación (velocidad y tiempo) juega un papel fundamental en la realización del tratamiento, ya que interfiere en la ruptura y formación de flóculos. Por lo tanto, para el tratamiento de aguas de mataderos de pescado, se evaluaron dos coagulantes (natural: Tanfloc SH®; inorgánico: Cloruro Férrico) en relación con la cinética de floculación y se realizó la modelación de estos datos experimentales, utilizando el modelo fenomenológico y de redes neuronales artificiales (RNA). Para ello, se probaron diferentes gradientes de velocidad y tiempos de mezcla lentos para cada coagulante en pruebas de jarras, y se determinaron los coeficientes de agregación (KA) y ruptura (KB) de los flóculos formados. Las condiciones de mezcla lenta más efectivas (gradiente de velocidad y tiempo) obtenidas para el paso de floculación del efluente fueron 16 s-1 y 20 min para el coagulante Tanfloc SH® y 24 s-1 y 30 min para el coagulante de Cloruro Férrico. Los datos de cinética de floculación fueron sometidos a programación en RNAs utilizando el software Python y también a procedimientos de iteración numérica computacional utilizando la herramienta Solver del programa Microsoft Excel®. Los dos modelos pudieron representar adecuadamente los datos cinéticos experimentales de la floculación, destacando las RNA como una herramienta de modelado alternativa a los modelos matemáticos utilizados convencionalmente.O processo de coagulação/floculação é uma técnica das mais comumente utilizadas para promover a separação sólido-líquido do efluente, com base no princípio da desestabilização das partículas coloidais e em suspensão, seguido da agregação e estruturação destas partículas em flocos. Nesse processo, a cinética de floculação (velocidade e tempo) tem papel fundamental no desempenho do tratamento, pois interfere na ruptura e formação dos flocos. Sendo assim, para o tratamento de águas de frigorífico de peixes, dois coagulantes (natural: Tanfloc SHÒ; inorgânico: Cloreto Férrico) foram avaliados em relação à cinética de floculação e realizada a modelagem desses dados experimentais, empregando o modelo fenomenológico e de redes neurais artificiais (RNAs). Para tanto, diferentes gradientes de velocidade e tempos de mistura lenta foram testados para cada coagulante em ensaios de jar test, e determinados os coeficientes de agregação (KA) e de ruptura (KB) dos flocos formados. As condições de mistura lenta (gradiente de velocidade e tempo) mais efetivas obtidas para a etapa de floculação do efluente foram 16 s-1 e 20 min para o coagulante Tanfloc SHÒ e 24 s-1 e 30 min para o coagulante Cloreto Férrico. Os dados cinéticos de floculação foram submetidos a uma programação em RNAs por meio do Software Python e, também a procedimentos de iteração numérica computacional utilizando a ferramenta Solver do programa Microsoft ExcelÒ. Ambos os modelos foram capazes de representar adequadamente os dados cinéticos experimentais de floculação, destacando-se as RNAs como uma ferramenta de modelagem alternativa aos modelos matemáticos convencionalmente utilizados.Research, Society and Development2022-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/3397610.33448/rsd-v11i11.33976Research, Society and Development; Vol. 11 No. 11; e528111133976Research, Society and Development; Vol. 11 Núm. 11; e528111133976Research, Society and Development; v. 11 n. 11; e5281111339762525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIporhttps://rsdjournal.org/index.php/rsd/article/view/33976/28668Copyright (c) 2022 Gabriel Castamann ; Márcia Teresinha Veit; William Luis Reginatto Colombo; Soraya Moreno Palácio; Gilberto da Cunha Gonçalves; Jéssica Caroline Zanette Barbierihttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessCastamann , GabrielVeit, Márcia TeresinhaColombo, William Luis Reginatto Palácio, Soraya Moreno Gonçalves, Gilberto da Cunha Barbieri, Jéssica Caroline Zanette 2022-09-05T13:24:46Zoai:ojs.pkp.sfu.ca:article/33976Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:49:27.467306Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false |
dc.title.none.fl_str_mv |
Study of the flocculation kinetics of fish processing wastewater using a phenomenological model and machine learning techniques Estudio de la cinética de floculación de aguas de matadero de pescado mediante un modelo fenomenológico y técnicas de aprendizaje automático Estudo da cinética de floculação de águas de frigorífico de peixes utilizando um modelo fenomenológico e técnicas de aprendizado de máquina |
title |
Study of the flocculation kinetics of fish processing wastewater using a phenomenological model and machine learning techniques |
spellingShingle |
Study of the flocculation kinetics of fish processing wastewater using a phenomenological model and machine learning techniques Study of the flocculation kinetics of fish processing wastewater using a phenomenological model and machine learning techniques Castamann , Gabriel Gradiente de velocidade Cinética de floculação Modelagem Redes neurais artificiais. Gradiente de velocidad Cinética de floculación Modelado Redes neuronales artificiales. Velocity gradient Flocculation kinetics Modeling Artificial neural networks. Castamann , Gabriel Gradiente de velocidade Cinética de floculação Modelagem Redes neurais artificiais. Gradiente de velocidad Cinética de floculación Modelado Redes neuronales artificiales. Velocity gradient Flocculation kinetics Modeling Artificial neural networks. |
title_short |
Study of the flocculation kinetics of fish processing wastewater using a phenomenological model and machine learning techniques |
title_full |
Study of the flocculation kinetics of fish processing wastewater using a phenomenological model and machine learning techniques |
title_fullStr |
Study of the flocculation kinetics of fish processing wastewater using a phenomenological model and machine learning techniques Study of the flocculation kinetics of fish processing wastewater using a phenomenological model and machine learning techniques |
title_full_unstemmed |
Study of the flocculation kinetics of fish processing wastewater using a phenomenological model and machine learning techniques Study of the flocculation kinetics of fish processing wastewater using a phenomenological model and machine learning techniques |
title_sort |
Study of the flocculation kinetics of fish processing wastewater using a phenomenological model and machine learning techniques |
author |
Castamann , Gabriel |
author_facet |
Castamann , Gabriel Castamann , Gabriel Veit, Márcia Teresinha Colombo, William Luis Reginatto Palácio, Soraya Moreno Gonçalves, Gilberto da Cunha Barbieri, Jéssica Caroline Zanette Veit, Márcia Teresinha Colombo, William Luis Reginatto Palácio, Soraya Moreno Gonçalves, Gilberto da Cunha Barbieri, Jéssica Caroline Zanette |
author_role |
author |
author2 |
Veit, Márcia Teresinha Colombo, William Luis Reginatto Palácio, Soraya Moreno Gonçalves, Gilberto da Cunha Barbieri, Jéssica Caroline Zanette |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Castamann , Gabriel Veit, Márcia Teresinha Colombo, William Luis Reginatto Palácio, Soraya Moreno Gonçalves, Gilberto da Cunha Barbieri, Jéssica Caroline Zanette |
dc.subject.por.fl_str_mv |
Gradiente de velocidade Cinética de floculação Modelagem Redes neurais artificiais. Gradiente de velocidad Cinética de floculación Modelado Redes neuronales artificiales. Velocity gradient Flocculation kinetics Modeling Artificial neural networks. |
topic |
Gradiente de velocidade Cinética de floculação Modelagem Redes neurais artificiais. Gradiente de velocidad Cinética de floculación Modelado Redes neuronales artificiales. Velocity gradient Flocculation kinetics Modeling Artificial neural networks. |
description |
The coagulation/flocculation process is a widely used technique typically applied to solid-liquid separation for wastewater treatment, based on the principle of destabilization of colloidal particles in suspension, followed by the aggregation of these particles into structured flocs. In this process, the flocculation kinetics (velocity and time) plays a key role in the treatment performance, as it interferes with the flocs rupture and formation. Therefore, for the treatment of fish-processing wastewater, two coagulants (natural: Tanfloc SH®; inorganic: Ferric Chloride) were evaluated in the flocculation kinetics and the experimental data modeling was performed using a phenomenological and artificial neural networks (ANNs) model. For this purpose, different velocity gradients and slow-mixing times were used in jar test experiments for each coagulant, and the aggregation (KA) and rupture (KB) coefficients of the formed flocs were determined. The most effective slow-mixing conditions (velocity and time) obtained for the effluent flocculation step were 16 s-1 and 20 min for the Tanfloc SH® coagulant and 24 s-1 and 30 min for the Ferric Chloride coagulant. The flocculation kinetic data were submitted to programming in ANNs using Python Software and to computational numerical iteration procedures using the Solver tool of the Microsoft Excel® program. Both models were able to adequately represent the flocculation kinetic experimental data, highlighting the ANNs as an alternative modeling tool to the mathematical models conventionally used. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-09-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/33976 10.33448/rsd-v11i11.33976 |
url |
https://rsdjournal.org/index.php/rsd/article/view/33976 |
identifier_str_mv |
10.33448/rsd-v11i11.33976 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/33976/28668 |
dc.rights.driver.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Research, Society and Development |
publisher.none.fl_str_mv |
Research, Society and Development |
dc.source.none.fl_str_mv |
Research, Society and Development; Vol. 11 No. 11; e528111133976 Research, Society and Development; Vol. 11 Núm. 11; e528111133976 Research, Society and Development; v. 11 n. 11; e528111133976 2525-3409 reponame:Research, Society and Development instname:Universidade Federal de Itajubá (UNIFEI) instacron:UNIFEI |
instname_str |
Universidade Federal de Itajubá (UNIFEI) |
instacron_str |
UNIFEI |
institution |
UNIFEI |
reponame_str |
Research, Society and Development |
collection |
Research, Society and Development |
repository.name.fl_str_mv |
Research, Society and Development - Universidade Federal de Itajubá (UNIFEI) |
repository.mail.fl_str_mv |
rsd.articles@gmail.com |
_version_ |
1822178561243480064 |
dc.identifier.doi.none.fl_str_mv |
10.33448/rsd-v11i11.33976 |