A statistical analysis of the relationship of civil construction GDP to cement production in Brazil

Detalhes bibliográficos
Autor(a) principal: Souza, Ana Carolina Rodrigues da Rocha
Data de Publicação: 2022
Outros Autores: Gomes, Helton Cristiano, Guimarães, Irce Fernandes Gomes
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Research, Society and Development
Texto Completo: https://rsdjournal.org/index.php/rsd/article/view/29902
Resumo: The ICC plays an important role in the Brazilian economy. This participation in the country's GDP remains, on average, above 5% per year. Cement, one of the main resources in this context, is used in almost all types of constructions in the country. The Brazil are among the 10 largest producers in the world and cement be the main component of concrete, makes widely used. The generation of different data is the starting point for decisions, optimization and forecasting of the activities of this communication network. To transform this data into information, many institutions use with tools such as Data Science. In this sense, this article presents the result of analysis of the behavior of cement production in Brazil, based on results generated through Machine Learning. Trends and seasonality periods were identified, as well as prediction models for future periods were proposed. Verified the existence of a strong positive correlation between cement production and the ICC GDP in Brazil. Machine Learning models were proposed and compared to predict the ICC GDP based on the annual cement production in Brazil, which showed high accuracy. It was concluded that the Ensemble Learning methods adapted better to the data, especially Random Forest.
id UNIFEI_6f91603847a27f278276accc6315c7d8
oai_identifier_str oai:ojs.pkp.sfu.ca:article/29902
network_acronym_str UNIFEI
network_name_str Research, Society and Development
repository_id_str
spelling A statistical analysis of the relationship of civil construction GDP to cement production in BrazilUn análisis estadístico de la relación del PIB de la construcción civil com la producción de cemento em Brasil Uma análise estatística da relação do PIB da construção civil com a produção de cimento no Brasil ConstructionCement productionGDPData scienceMachine Learning.Construcción CivilProducción de CementoPIBCiencia de DatosAprendizaje Automático.Construção CivilProdução de CimentoPIBCiência de DadosMachine Learning.The ICC plays an important role in the Brazilian economy. This participation in the country's GDP remains, on average, above 5% per year. Cement, one of the main resources in this context, is used in almost all types of constructions in the country. The Brazil are among the 10 largest producers in the world and cement be the main component of concrete, makes widely used. The generation of different data is the starting point for decisions, optimization and forecasting of the activities of this communication network. To transform this data into information, many institutions use with tools such as Data Science. In this sense, this article presents the result of analysis of the behavior of cement production in Brazil, based on results generated through Machine Learning. Trends and seasonality periods were identified, as well as prediction models for future periods were proposed. Verified the existence of a strong positive correlation between cement production and the ICC GDP in Brazil. Machine Learning models were proposed and compared to predict the ICC GDP based on the annual cement production in Brazil, which showed high accuracy. It was concluded that the Ensemble Learning methods adapted better to the data, especially Random Forest.ICC juega un papel importante en la economía brasileña. Esta participación en el PIB del país se mantiene, en promedio, por encima del 5% anual. El cemento, uno de los principales recursos en este contexto, se utiliza en casi todo tipo de construcciones en el país. Brasil se encuentra entre los 10 mayores productores del mundo y el cemento es el principal componente del hormigón, por lo que es ampliamente utilizado. La generación de diferentes datos es el punto de partida para la toma de decisiones, optimización y previsión de las actividades de esta red de comunicación. Para transformar estos datos en información, muchas instituciones utilizan herramientas como Data Science. En ese sentido, este artículo presenta el resultado del análisis del comportamiento de la producción de cemento en Brasil, a partir de resultados generados a través de Machine Learning. Se identificaron periodos de tendencias y estacionalidad, así como se propusieron modelos de pronóstico para periodos futuros. Hubo una fuerte correlación positiva entre la producción de cemento y el PIB de ICC en Brasil. Se propusieron y compararon modelos de aprendizaje automático para predecir el PIB ICC basado en la producción anual de cemento en Brasil, que mostró una alta precisión. Se concluyó que los métodos de Ensemble Learning se adaptaron mejor a los datos, especialmente Random Forest.A ICC desempenha um papel importante na economia brasileira. Essa participação no PIB do país permanece, em média, acima de 5% ao ano. O cimento, um dos principais recursos neste contexto, é utilizado em quase todos os tipos de construções do país. O Brasil está entre os 10 maiores produtores do mundo e o cimento é o principal componente do concreto, faz com que seja amplamente utilizado. A geração de diferentes dados é o ponto de partida para decisões, otimização e previsão das atividades desta rede de comunicação. Para transformar esses dados em informações, muitas instituições utilizam ferramentas como Data Science. Nesse sentido, este artigo apresenta o resultado da análise do comportamento da produção de cimento no Brasil, com base em resultados gerados por meio de Machine Learning. Foram identificadas tendências e períodos de sazonalidade, bem como propostos modelos de previsão para períodos futuros. Verificou-se a existência de uma forte correlação positiva entre a produção de cimento e o PIB ICC no Brasil. Modelos de aprendizado de máquina foram propostos e comparados para prever o PIB do ICC com base na produção anual de cimento no Brasil, que apresentou alta precisão. Concluiu-se que os métodos de Ensemble Learning se adaptaram melhor aos dados, principalmente o Random Forest.Research, Society and Development2022-05-23info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/2990210.33448/rsd-v11i7.29902Research, Society and Development; Vol. 11 No. 7; e27011729902Research, Society and Development; Vol. 11 Núm. 7; e27011729902Research, Society and Development; v. 11 n. 7; e270117299022525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIenghttps://rsdjournal.org/index.php/rsd/article/view/29902/25856Copyright (c) 2022 Ana Carolina Rodrigues da Rocha Souza; Helton Cristiano Gomes; Irce Fernandes Gomes Guimarãeshttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessSouza, Ana Carolina Rodrigues da Rocha Gomes, Helton CristianoGuimarães, Irce Fernandes Gomes 2022-06-06T15:12:05Zoai:ojs.pkp.sfu.ca:article/29902Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:46:50.902729Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false
dc.title.none.fl_str_mv A statistical analysis of the relationship of civil construction GDP to cement production in Brazil
Un análisis estadístico de la relación del PIB de la construcción civil com la producción de cemento em Brasil
Uma análise estatística da relação do PIB da construção civil com a produção de cimento no Brasil
title A statistical analysis of the relationship of civil construction GDP to cement production in Brazil
spellingShingle A statistical analysis of the relationship of civil construction GDP to cement production in Brazil
Souza, Ana Carolina Rodrigues da Rocha
Construction
Cement production
GDP
Data science
Machine Learning.
Construcción Civil
Producción de Cemento
PIB
Ciencia de Datos
Aprendizaje Automático.
Construção Civil
Produção de Cimento
PIB
Ciência de Dados
Machine Learning.
title_short A statistical analysis of the relationship of civil construction GDP to cement production in Brazil
title_full A statistical analysis of the relationship of civil construction GDP to cement production in Brazil
title_fullStr A statistical analysis of the relationship of civil construction GDP to cement production in Brazil
title_full_unstemmed A statistical analysis of the relationship of civil construction GDP to cement production in Brazil
title_sort A statistical analysis of the relationship of civil construction GDP to cement production in Brazil
author Souza, Ana Carolina Rodrigues da Rocha
author_facet Souza, Ana Carolina Rodrigues da Rocha
Gomes, Helton Cristiano
Guimarães, Irce Fernandes Gomes
author_role author
author2 Gomes, Helton Cristiano
Guimarães, Irce Fernandes Gomes
author2_role author
author
dc.contributor.author.fl_str_mv Souza, Ana Carolina Rodrigues da Rocha
Gomes, Helton Cristiano
Guimarães, Irce Fernandes Gomes
dc.subject.por.fl_str_mv Construction
Cement production
GDP
Data science
Machine Learning.
Construcción Civil
Producción de Cemento
PIB
Ciencia de Datos
Aprendizaje Automático.
Construção Civil
Produção de Cimento
PIB
Ciência de Dados
Machine Learning.
topic Construction
Cement production
GDP
Data science
Machine Learning.
Construcción Civil
Producción de Cemento
PIB
Ciencia de Datos
Aprendizaje Automático.
Construção Civil
Produção de Cimento
PIB
Ciência de Dados
Machine Learning.
description The ICC plays an important role in the Brazilian economy. This participation in the country's GDP remains, on average, above 5% per year. Cement, one of the main resources in this context, is used in almost all types of constructions in the country. The Brazil are among the 10 largest producers in the world and cement be the main component of concrete, makes widely used. The generation of different data is the starting point for decisions, optimization and forecasting of the activities of this communication network. To transform this data into information, many institutions use with tools such as Data Science. In this sense, this article presents the result of analysis of the behavior of cement production in Brazil, based on results generated through Machine Learning. Trends and seasonality periods were identified, as well as prediction models for future periods were proposed. Verified the existence of a strong positive correlation between cement production and the ICC GDP in Brazil. Machine Learning models were proposed and compared to predict the ICC GDP based on the annual cement production in Brazil, which showed high accuracy. It was concluded that the Ensemble Learning methods adapted better to the data, especially Random Forest.
publishDate 2022
dc.date.none.fl_str_mv 2022-05-23
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/29902
10.33448/rsd-v11i7.29902
url https://rsdjournal.org/index.php/rsd/article/view/29902
identifier_str_mv 10.33448/rsd-v11i7.29902
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/29902/25856
dc.rights.driver.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Research, Society and Development
publisher.none.fl_str_mv Research, Society and Development
dc.source.none.fl_str_mv Research, Society and Development; Vol. 11 No. 7; e27011729902
Research, Society and Development; Vol. 11 Núm. 7; e27011729902
Research, Society and Development; v. 11 n. 7; e27011729902
2525-3409
reponame:Research, Society and Development
instname:Universidade Federal de Itajubá (UNIFEI)
instacron:UNIFEI
instname_str Universidade Federal de Itajubá (UNIFEI)
instacron_str UNIFEI
institution UNIFEI
reponame_str Research, Society and Development
collection Research, Society and Development
repository.name.fl_str_mv Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)
repository.mail.fl_str_mv rsd.articles@gmail.com
_version_ 1797052766545248256