A statistical analysis of the relationship of civil construction GDP to cement production in Brazil
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Research, Society and Development |
Texto Completo: | https://rsdjournal.org/index.php/rsd/article/view/29902 |
Resumo: | The ICC plays an important role in the Brazilian economy. This participation in the country's GDP remains, on average, above 5% per year. Cement, one of the main resources in this context, is used in almost all types of constructions in the country. The Brazil are among the 10 largest producers in the world and cement be the main component of concrete, makes widely used. The generation of different data is the starting point for decisions, optimization and forecasting of the activities of this communication network. To transform this data into information, many institutions use with tools such as Data Science. In this sense, this article presents the result of analysis of the behavior of cement production in Brazil, based on results generated through Machine Learning. Trends and seasonality periods were identified, as well as prediction models for future periods were proposed. Verified the existence of a strong positive correlation between cement production and the ICC GDP in Brazil. Machine Learning models were proposed and compared to predict the ICC GDP based on the annual cement production in Brazil, which showed high accuracy. It was concluded that the Ensemble Learning methods adapted better to the data, especially Random Forest. |
id |
UNIFEI_6f91603847a27f278276accc6315c7d8 |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/29902 |
network_acronym_str |
UNIFEI |
network_name_str |
Research, Society and Development |
repository_id_str |
|
spelling |
A statistical analysis of the relationship of civil construction GDP to cement production in BrazilUn análisis estadístico de la relación del PIB de la construcción civil com la producción de cemento em Brasil Uma análise estatística da relação do PIB da construção civil com a produção de cimento no Brasil ConstructionCement productionGDPData scienceMachine Learning.Construcción CivilProducción de CementoPIBCiencia de DatosAprendizaje Automático.Construção CivilProdução de CimentoPIBCiência de DadosMachine Learning.The ICC plays an important role in the Brazilian economy. This participation in the country's GDP remains, on average, above 5% per year. Cement, one of the main resources in this context, is used in almost all types of constructions in the country. The Brazil are among the 10 largest producers in the world and cement be the main component of concrete, makes widely used. The generation of different data is the starting point for decisions, optimization and forecasting of the activities of this communication network. To transform this data into information, many institutions use with tools such as Data Science. In this sense, this article presents the result of analysis of the behavior of cement production in Brazil, based on results generated through Machine Learning. Trends and seasonality periods were identified, as well as prediction models for future periods were proposed. Verified the existence of a strong positive correlation between cement production and the ICC GDP in Brazil. Machine Learning models were proposed and compared to predict the ICC GDP based on the annual cement production in Brazil, which showed high accuracy. It was concluded that the Ensemble Learning methods adapted better to the data, especially Random Forest.ICC juega un papel importante en la economía brasileña. Esta participación en el PIB del país se mantiene, en promedio, por encima del 5% anual. El cemento, uno de los principales recursos en este contexto, se utiliza en casi todo tipo de construcciones en el país. Brasil se encuentra entre los 10 mayores productores del mundo y el cemento es el principal componente del hormigón, por lo que es ampliamente utilizado. La generación de diferentes datos es el punto de partida para la toma de decisiones, optimización y previsión de las actividades de esta red de comunicación. Para transformar estos datos en información, muchas instituciones utilizan herramientas como Data Science. En ese sentido, este artículo presenta el resultado del análisis del comportamiento de la producción de cemento en Brasil, a partir de resultados generados a través de Machine Learning. Se identificaron periodos de tendencias y estacionalidad, así como se propusieron modelos de pronóstico para periodos futuros. Hubo una fuerte correlación positiva entre la producción de cemento y el PIB de ICC en Brasil. Se propusieron y compararon modelos de aprendizaje automático para predecir el PIB ICC basado en la producción anual de cemento en Brasil, que mostró una alta precisión. Se concluyó que los métodos de Ensemble Learning se adaptaron mejor a los datos, especialmente Random Forest.A ICC desempenha um papel importante na economia brasileira. Essa participação no PIB do país permanece, em média, acima de 5% ao ano. O cimento, um dos principais recursos neste contexto, é utilizado em quase todos os tipos de construções do país. O Brasil está entre os 10 maiores produtores do mundo e o cimento é o principal componente do concreto, faz com que seja amplamente utilizado. A geração de diferentes dados é o ponto de partida para decisões, otimização e previsão das atividades desta rede de comunicação. Para transformar esses dados em informações, muitas instituições utilizam ferramentas como Data Science. Nesse sentido, este artigo apresenta o resultado da análise do comportamento da produção de cimento no Brasil, com base em resultados gerados por meio de Machine Learning. Foram identificadas tendências e períodos de sazonalidade, bem como propostos modelos de previsão para períodos futuros. Verificou-se a existência de uma forte correlação positiva entre a produção de cimento e o PIB ICC no Brasil. Modelos de aprendizado de máquina foram propostos e comparados para prever o PIB do ICC com base na produção anual de cimento no Brasil, que apresentou alta precisão. Concluiu-se que os métodos de Ensemble Learning se adaptaram melhor aos dados, principalmente o Random Forest.Research, Society and Development2022-05-23info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/2990210.33448/rsd-v11i7.29902Research, Society and Development; Vol. 11 No. 7; e27011729902Research, Society and Development; Vol. 11 Núm. 7; e27011729902Research, Society and Development; v. 11 n. 7; e270117299022525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIenghttps://rsdjournal.org/index.php/rsd/article/view/29902/25856Copyright (c) 2022 Ana Carolina Rodrigues da Rocha Souza; Helton Cristiano Gomes; Irce Fernandes Gomes Guimarãeshttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessSouza, Ana Carolina Rodrigues da Rocha Gomes, Helton CristianoGuimarães, Irce Fernandes Gomes 2022-06-06T15:12:05Zoai:ojs.pkp.sfu.ca:article/29902Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:46:50.902729Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false |
dc.title.none.fl_str_mv |
A statistical analysis of the relationship of civil construction GDP to cement production in Brazil Un análisis estadístico de la relación del PIB de la construcción civil com la producción de cemento em Brasil Uma análise estatística da relação do PIB da construção civil com a produção de cimento no Brasil |
title |
A statistical analysis of the relationship of civil construction GDP to cement production in Brazil |
spellingShingle |
A statistical analysis of the relationship of civil construction GDP to cement production in Brazil Souza, Ana Carolina Rodrigues da Rocha Construction Cement production GDP Data science Machine Learning. Construcción Civil Producción de Cemento PIB Ciencia de Datos Aprendizaje Automático. Construção Civil Produção de Cimento PIB Ciência de Dados Machine Learning. |
title_short |
A statistical analysis of the relationship of civil construction GDP to cement production in Brazil |
title_full |
A statistical analysis of the relationship of civil construction GDP to cement production in Brazil |
title_fullStr |
A statistical analysis of the relationship of civil construction GDP to cement production in Brazil |
title_full_unstemmed |
A statistical analysis of the relationship of civil construction GDP to cement production in Brazil |
title_sort |
A statistical analysis of the relationship of civil construction GDP to cement production in Brazil |
author |
Souza, Ana Carolina Rodrigues da Rocha |
author_facet |
Souza, Ana Carolina Rodrigues da Rocha Gomes, Helton Cristiano Guimarães, Irce Fernandes Gomes |
author_role |
author |
author2 |
Gomes, Helton Cristiano Guimarães, Irce Fernandes Gomes |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Souza, Ana Carolina Rodrigues da Rocha Gomes, Helton Cristiano Guimarães, Irce Fernandes Gomes |
dc.subject.por.fl_str_mv |
Construction Cement production GDP Data science Machine Learning. Construcción Civil Producción de Cemento PIB Ciencia de Datos Aprendizaje Automático. Construção Civil Produção de Cimento PIB Ciência de Dados Machine Learning. |
topic |
Construction Cement production GDP Data science Machine Learning. Construcción Civil Producción de Cemento PIB Ciencia de Datos Aprendizaje Automático. Construção Civil Produção de Cimento PIB Ciência de Dados Machine Learning. |
description |
The ICC plays an important role in the Brazilian economy. This participation in the country's GDP remains, on average, above 5% per year. Cement, one of the main resources in this context, is used in almost all types of constructions in the country. The Brazil are among the 10 largest producers in the world and cement be the main component of concrete, makes widely used. The generation of different data is the starting point for decisions, optimization and forecasting of the activities of this communication network. To transform this data into information, many institutions use with tools such as Data Science. In this sense, this article presents the result of analysis of the behavior of cement production in Brazil, based on results generated through Machine Learning. Trends and seasonality periods were identified, as well as prediction models for future periods were proposed. Verified the existence of a strong positive correlation between cement production and the ICC GDP in Brazil. Machine Learning models were proposed and compared to predict the ICC GDP based on the annual cement production in Brazil, which showed high accuracy. It was concluded that the Ensemble Learning methods adapted better to the data, especially Random Forest. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-05-23 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/29902 10.33448/rsd-v11i7.29902 |
url |
https://rsdjournal.org/index.php/rsd/article/view/29902 |
identifier_str_mv |
10.33448/rsd-v11i7.29902 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/29902/25856 |
dc.rights.driver.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Research, Society and Development |
publisher.none.fl_str_mv |
Research, Society and Development |
dc.source.none.fl_str_mv |
Research, Society and Development; Vol. 11 No. 7; e27011729902 Research, Society and Development; Vol. 11 Núm. 7; e27011729902 Research, Society and Development; v. 11 n. 7; e27011729902 2525-3409 reponame:Research, Society and Development instname:Universidade Federal de Itajubá (UNIFEI) instacron:UNIFEI |
instname_str |
Universidade Federal de Itajubá (UNIFEI) |
instacron_str |
UNIFEI |
institution |
UNIFEI |
reponame_str |
Research, Society and Development |
collection |
Research, Society and Development |
repository.name.fl_str_mv |
Research, Society and Development - Universidade Federal de Itajubá (UNIFEI) |
repository.mail.fl_str_mv |
rsd.articles@gmail.com |
_version_ |
1797052766545248256 |