Classification of Pneumonia images on mobile devices with Quantized Neural Network
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Research, Society and Development |
Texto Completo: | https://rsdjournal.org/index.php/rsd/article/view/8382 |
Resumo: | This paper presents an approach for the classification of child chest X-ray images into two classes: pneumonia and normal. We employ Convolutional Neural Networks, from pre-trained networks together with a quantization process, using the platform TensorFlow Lite method. This reduces the processing requirement and computational cost. Results have shown accuracy up to 95.4% and 94.2% for MobileNetV1 and MobileNetV2, respectively. The resulting mobile app also presents a simple and intuitive user interface. |
id |
UNIFEI_6fd758901b7107bf917316217ce4b778 |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/8382 |
network_acronym_str |
UNIFEI |
network_name_str |
Research, Society and Development |
repository_id_str |
|
spelling |
Classification of Pneumonia images on mobile devices with Quantized Neural NetworkClasificación de imágenes de neumonía en dispositivos móviles con red neuronal cuantificadaClassificação de imagens de Pneumonia em dispositivos móveis com Rede Neural QuantizadaClasificaciónImágenesCuantizaciónDispositivos móvilesNeumonía.ClassificaçãoImagensQuantizaçãoDispositivos MóveisPneumonia.ClassificationImagesQuantizationMobile DevicesPneumonia.This paper presents an approach for the classification of child chest X-ray images into two classes: pneumonia and normal. We employ Convolutional Neural Networks, from pre-trained networks together with a quantization process, using the platform TensorFlow Lite method. This reduces the processing requirement and computational cost. Results have shown accuracy up to 95.4% and 94.2% for MobileNetV1 and MobileNetV2, respectively. The resulting mobile app also presents a simple and intuitive user interface.Este artículo presenta un enfoque para clasificar las imágenes de rayos X de tórax de los niños en dos clases: neumonía y normal. Usamos redes neuronales convolucionales, de redes pre-entrenadas junto con un proceso de cuantificación, utilizando el método de la plataforma TensorFlow Lite. Esto reduce los requisitos de procesamiento y el costo computacional. Los resultados mostraron una precisión de hasta 95,4% y 94,2% para MobileNetV1 y MobileNetV2, respectivamente. La aplicación móvil resultante también cuenta con una interfaz de usuario sencilla e intuitiva.Este artigo apresenta uma abordagem para a classificação de imagens de radiografias de tórax de crianças em duas classes: pneumonia e normal. Empregamos Redes Neurais Convolucionais, a partir de redes pré-treinadas em conjunto com um processo de quantização, utilizando o método da plataforma TensorFlow Lite. Isso reduz a necessidade de processamento e o custo computacional. Os resultados mostraram precisão de até 95,4% e 94,2% para MobileNetV1 e MobileNetV2, respectivamente. O aplicativo móvel resultante também apresenta uma interface de usuário simples e intuitiva.Research, Society and Development2020-09-19info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/838210.33448/rsd-v9i10.8382Research, Society and Development; Vol. 9 No. 10; e889108382Research, Society and Development; Vol. 9 Núm. 10; e889108382Research, Society and Development; v. 9 n. 10; e8891083822525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIenghttps://rsdjournal.org/index.php/rsd/article/view/8382/7392Copyright (c) 2020 Jose Vigno Moura Sousa; Vilson Rosa de Almeida; Aratã Andrade Saraiva; Domingos Bruno Sousa Santos; Pedro Mateus Cunha Pimentel; Luciano Lopes de Sousahttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessSousa, Jose Vigno Moura Almeida, Vilson Rosa de Saraiva, Aratã Andrade Santos, Domingos Bruno Sousa Pimentel, Pedro Mateus CunhaSousa, Luciano Lopes de 2020-10-31T12:03:23Zoai:ojs.pkp.sfu.ca:article/8382Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:30:52.209364Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false |
dc.title.none.fl_str_mv |
Classification of Pneumonia images on mobile devices with Quantized Neural Network Clasificación de imágenes de neumonía en dispositivos móviles con red neuronal cuantificada Classificação de imagens de Pneumonia em dispositivos móveis com Rede Neural Quantizada |
title |
Classification of Pneumonia images on mobile devices with Quantized Neural Network |
spellingShingle |
Classification of Pneumonia images on mobile devices with Quantized Neural Network Sousa, Jose Vigno Moura Clasificación Imágenes Cuantización Dispositivos móviles Neumonía. Classificação Imagens Quantização Dispositivos Móveis Pneumonia. Classification Images Quantization Mobile Devices Pneumonia. |
title_short |
Classification of Pneumonia images on mobile devices with Quantized Neural Network |
title_full |
Classification of Pneumonia images on mobile devices with Quantized Neural Network |
title_fullStr |
Classification of Pneumonia images on mobile devices with Quantized Neural Network |
title_full_unstemmed |
Classification of Pneumonia images on mobile devices with Quantized Neural Network |
title_sort |
Classification of Pneumonia images on mobile devices with Quantized Neural Network |
author |
Sousa, Jose Vigno Moura |
author_facet |
Sousa, Jose Vigno Moura Almeida, Vilson Rosa de Saraiva, Aratã Andrade Santos, Domingos Bruno Sousa Pimentel, Pedro Mateus Cunha Sousa, Luciano Lopes de |
author_role |
author |
author2 |
Almeida, Vilson Rosa de Saraiva, Aratã Andrade Santos, Domingos Bruno Sousa Pimentel, Pedro Mateus Cunha Sousa, Luciano Lopes de |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Sousa, Jose Vigno Moura Almeida, Vilson Rosa de Saraiva, Aratã Andrade Santos, Domingos Bruno Sousa Pimentel, Pedro Mateus Cunha Sousa, Luciano Lopes de |
dc.subject.por.fl_str_mv |
Clasificación Imágenes Cuantización Dispositivos móviles Neumonía. Classificação Imagens Quantização Dispositivos Móveis Pneumonia. Classification Images Quantization Mobile Devices Pneumonia. |
topic |
Clasificación Imágenes Cuantización Dispositivos móviles Neumonía. Classificação Imagens Quantização Dispositivos Móveis Pneumonia. Classification Images Quantization Mobile Devices Pneumonia. |
description |
This paper presents an approach for the classification of child chest X-ray images into two classes: pneumonia and normal. We employ Convolutional Neural Networks, from pre-trained networks together with a quantization process, using the platform TensorFlow Lite method. This reduces the processing requirement and computational cost. Results have shown accuracy up to 95.4% and 94.2% for MobileNetV1 and MobileNetV2, respectively. The resulting mobile app also presents a simple and intuitive user interface. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-09-19 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/8382 10.33448/rsd-v9i10.8382 |
url |
https://rsdjournal.org/index.php/rsd/article/view/8382 |
identifier_str_mv |
10.33448/rsd-v9i10.8382 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/8382/7392 |
dc.rights.driver.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Research, Society and Development |
publisher.none.fl_str_mv |
Research, Society and Development |
dc.source.none.fl_str_mv |
Research, Society and Development; Vol. 9 No. 10; e889108382 Research, Society and Development; Vol. 9 Núm. 10; e889108382 Research, Society and Development; v. 9 n. 10; e889108382 2525-3409 reponame:Research, Society and Development instname:Universidade Federal de Itajubá (UNIFEI) instacron:UNIFEI |
instname_str |
Universidade Federal de Itajubá (UNIFEI) |
instacron_str |
UNIFEI |
institution |
UNIFEI |
reponame_str |
Research, Society and Development |
collection |
Research, Society and Development |
repository.name.fl_str_mv |
Research, Society and Development - Universidade Federal de Itajubá (UNIFEI) |
repository.mail.fl_str_mv |
rsd.articles@gmail.com |
_version_ |
1797052740601380864 |