Prediction of blast-induced ground vibration using artificial neural networks

Detalhes bibliográficos
Autor(a) principal: Zorzal, Caroline Belisário
Data de Publicação: 2022
Outros Autores: Santos, Francisco Lledo dos, Silva, José Margarida da, Souza, Rafael de Freitas
Tipo de documento: Artigo
Idioma: por
Título da fonte: Research, Society and Development
Texto Completo: https://rsdjournal.org/index.php/rsd/article/view/34020
Resumo: The peak particle velocity is the most commonly utilized metric in the mineral sector for quantifying and evaluating the damage potential of blast-induced ground vibration (PPV). Over time, initiatives have been conducted with the goal of measuring PPV levels. Intelligent systems are potential methods for estimating rock blasting results, due to significant improvements in computer technology. In this regard, the goal of this research is to use artificial neural networks to evaluate seismic vibrations caused by rock blasting with explosives in a mine in Quadrilátero Ferrífero. The database obtained in the field was separated into training (70%) and test (30%) samples. Different groups of variables were examined considering the necessity of selecting appropriate input variables for neural network training. The distance between the monitoring and detonation points, as well as the maximum charge per delay, were input variables in the network that performed best. The same database was used to compare the performance of neural networks with the performance of empirical and multiple regression models. Finally, in terms of coefficient of determination (R2) and root mean square error (RMSE) for measured and predicted data, the neural network model outperformed empirical equations and multiple regression. Furthermore, the importance of choosing the right input variables when using neural networks to estimate PPV was demonstrated.
id UNIFEI_717074bcd01f22e70a65b90b07d5bc1d
oai_identifier_str oai:ojs.pkp.sfu.ca:article/34020
network_acronym_str UNIFEI
network_name_str Research, Society and Development
repository_id_str
spelling Prediction of blast-induced ground vibration using artificial neural networksPredicción de vibraciones inducidas por voladuras de rocas com explosivos utilizando redes neuronales artificialesPredição de vibrações induzidas por desmontes de rochas por explosivos usando redes neurais artificiaisVelocidad máxima de vibración de partículasVibraciones sísmicasVoladura de rocas con explosivosRedes neuronales artificialesEcuaciones empíricas.Velocidade de vibração de pico de partículaVibrações sísmicasDesmonte de rochas por explosivosRedes neurais artificiaisEquações empíricas.Peak particle velocityBlast-induced ground vibrationRock blastingArtificial neural networkEmpirical equations.The peak particle velocity is the most commonly utilized metric in the mineral sector for quantifying and evaluating the damage potential of blast-induced ground vibration (PPV). Over time, initiatives have been conducted with the goal of measuring PPV levels. Intelligent systems are potential methods for estimating rock blasting results, due to significant improvements in computer technology. In this regard, the goal of this research is to use artificial neural networks to evaluate seismic vibrations caused by rock blasting with explosives in a mine in Quadrilátero Ferrífero. The database obtained in the field was separated into training (70%) and test (30%) samples. Different groups of variables were examined considering the necessity of selecting appropriate input variables for neural network training. The distance between the monitoring and detonation points, as well as the maximum charge per delay, were input variables in the network that performed best. The same database was used to compare the performance of neural networks with the performance of empirical and multiple regression models. Finally, in terms of coefficient of determination (R2) and root mean square error (RMSE) for measured and predicted data, the neural network model outperformed empirical equations and multiple regression. Furthermore, the importance of choosing the right input variables when using neural networks to estimate PPV was demonstrated.En la industria minera, el parámetro más utilizado para la cuantificación y evaluación del daño potencial de las vibraciones sísmicas generadas por la voladura de rocas es la velocidad máxima de vibración de partículas (VPP). Se han tomado varias iniciativas con el objetivo de estimar los niveles de VPP. Los rápidos avances en la tecnología informática han convertido a los sistemas inteligentes en herramientas prometedoras para estimar resultados de las voladuras de rocas. En este contexto, este estudio tiene como objetivo evaluar las vibraciones inducidas por la voladura de rocas con explosivos en una mina en el Quadrilátero Ferrífero por medio de redes neuronales artificiales. La base de datos se dividió en muestras de entrenamiento (70%) y prueba (30%) de las redes. Considerando la importancia de seleccionar variables adecuadas para el entrenamiento de redes, se analizaron diferentes grupos de variables de entrada. La arquitectura que demostró mejor desempeño consideró la distancia entre el punto de monitoreo y detonación y la carga máxima por retardo como variables input. Para comparar el desempeño de la red neuronal con el desempeño de modelos empíricos y de regresión múltiple, se aplicó la misma base de datos. Finalmente, el modelo de red neuronal demostró ser superior a las ecuaciones empíricas y la regresión múltiple en términos de coeficiente de determinación (R²) y raíz del error cuadrático medio (RMSE) para los datos medidos y predichos. Además, se demostró la importancia de seleccionar las variables de entrada adecuadas para estimar el VPP por medio de redes neuronales.Na indústria mineral, o parâmetro mais utilizado para a quantificação e avaliação do potencial de danos das vibrações sísmicas geradas por desmonte de rochas é a velocidade de vibração de pico de partícula (VPP). Várias iniciativas foram tomadas, ao longo do tempo, com o intuito de estimar os níveis de VPP. Os rápidos avanços na tecnologia computacional fizeram com que sistemas inteligentes se tornassem ferramentas promissoras na estimativa dos resultados de desmonte de rochas. Nesse contexto, este estudo tem como objetivo avaliar as vibrações induzidas por desmontes de rochas por explosivos em uma mina do Quadrilátero Ferrífero por meio de redes neurais artificiais. O banco de dados foi dividido em amostras de treinamento (70%) e teste (30%) das redes. Considerando a importância da seleção de variáveis de entrada adequadas para o treinamento das redes, diferentes grupos de variáveis input foram analisados. A arquitetura que demonstrou melhor desempenho considerou a distância entre o ponto de monitoramento e detonação e a carga máxima por espera como variáveis input. A fim de comparar o desempenho da rede neural com o desempenho de modelos empíricos e de regressão múltipla, os mesmos dados foram utilizados. Por fim, o modelo de redes neurais se mostrou superior às equações empíricas e à regressão múltipla em termos do coeficiente de determinação (R²) e da raiz do erro quadrático médio (RMSE) para os dados medidos e preditos. Além disso, demonstrou-se a importância da seleção das variáveis de entrada adequadas para a estimação de VPP por meio de redes neurais.Research, Society and Development2022-09-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/3402010.33448/rsd-v11i11.34020Research, Society and Development; Vol. 11 No. 11; e576111134020Research, Society and Development; Vol. 11 Núm. 11; e576111134020Research, Society and Development; v. 11 n. 11; e5761111340202525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIporhttps://rsdjournal.org/index.php/rsd/article/view/34020/28740Copyright (c) 2022 Caroline Belisário Zorzal; Francisco Lledo dos Santos; José Margarida da Silva; Rafael de Freitas Souzahttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessZorzal, Caroline BelisárioSantos, Francisco Lledo dosSilva, José Margarida da Souza, Rafael de Freitas 2022-09-05T13:24:46Zoai:ojs.pkp.sfu.ca:article/34020Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:49:29.025638Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false
dc.title.none.fl_str_mv Prediction of blast-induced ground vibration using artificial neural networks
Predicción de vibraciones inducidas por voladuras de rocas com explosivos utilizando redes neuronales artificiales
Predição de vibrações induzidas por desmontes de rochas por explosivos usando redes neurais artificiais
title Prediction of blast-induced ground vibration using artificial neural networks
spellingShingle Prediction of blast-induced ground vibration using artificial neural networks
Zorzal, Caroline Belisário
Velocidad máxima de vibración de partículas
Vibraciones sísmicas
Voladura de rocas con explosivos
Redes neuronales artificiales
Ecuaciones empíricas.
Velocidade de vibração de pico de partícula
Vibrações sísmicas
Desmonte de rochas por explosivos
Redes neurais artificiais
Equações empíricas.
Peak particle velocity
Blast-induced ground vibration
Rock blasting
Artificial neural network
Empirical equations.
title_short Prediction of blast-induced ground vibration using artificial neural networks
title_full Prediction of blast-induced ground vibration using artificial neural networks
title_fullStr Prediction of blast-induced ground vibration using artificial neural networks
title_full_unstemmed Prediction of blast-induced ground vibration using artificial neural networks
title_sort Prediction of blast-induced ground vibration using artificial neural networks
author Zorzal, Caroline Belisário
author_facet Zorzal, Caroline Belisário
Santos, Francisco Lledo dos
Silva, José Margarida da
Souza, Rafael de Freitas
author_role author
author2 Santos, Francisco Lledo dos
Silva, José Margarida da
Souza, Rafael de Freitas
author2_role author
author
author
dc.contributor.author.fl_str_mv Zorzal, Caroline Belisário
Santos, Francisco Lledo dos
Silva, José Margarida da
Souza, Rafael de Freitas
dc.subject.por.fl_str_mv Velocidad máxima de vibración de partículas
Vibraciones sísmicas
Voladura de rocas con explosivos
Redes neuronales artificiales
Ecuaciones empíricas.
Velocidade de vibração de pico de partícula
Vibrações sísmicas
Desmonte de rochas por explosivos
Redes neurais artificiais
Equações empíricas.
Peak particle velocity
Blast-induced ground vibration
Rock blasting
Artificial neural network
Empirical equations.
topic Velocidad máxima de vibración de partículas
Vibraciones sísmicas
Voladura de rocas con explosivos
Redes neuronales artificiales
Ecuaciones empíricas.
Velocidade de vibração de pico de partícula
Vibrações sísmicas
Desmonte de rochas por explosivos
Redes neurais artificiais
Equações empíricas.
Peak particle velocity
Blast-induced ground vibration
Rock blasting
Artificial neural network
Empirical equations.
description The peak particle velocity is the most commonly utilized metric in the mineral sector for quantifying and evaluating the damage potential of blast-induced ground vibration (PPV). Over time, initiatives have been conducted with the goal of measuring PPV levels. Intelligent systems are potential methods for estimating rock blasting results, due to significant improvements in computer technology. In this regard, the goal of this research is to use artificial neural networks to evaluate seismic vibrations caused by rock blasting with explosives in a mine in Quadrilátero Ferrífero. The database obtained in the field was separated into training (70%) and test (30%) samples. Different groups of variables were examined considering the necessity of selecting appropriate input variables for neural network training. The distance between the monitoring and detonation points, as well as the maximum charge per delay, were input variables in the network that performed best. The same database was used to compare the performance of neural networks with the performance of empirical and multiple regression models. Finally, in terms of coefficient of determination (R2) and root mean square error (RMSE) for measured and predicted data, the neural network model outperformed empirical equations and multiple regression. Furthermore, the importance of choosing the right input variables when using neural networks to estimate PPV was demonstrated.
publishDate 2022
dc.date.none.fl_str_mv 2022-09-03
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/34020
10.33448/rsd-v11i11.34020
url https://rsdjournal.org/index.php/rsd/article/view/34020
identifier_str_mv 10.33448/rsd-v11i11.34020
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/34020/28740
dc.rights.driver.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Research, Society and Development
publisher.none.fl_str_mv Research, Society and Development
dc.source.none.fl_str_mv Research, Society and Development; Vol. 11 No. 11; e576111134020
Research, Society and Development; Vol. 11 Núm. 11; e576111134020
Research, Society and Development; v. 11 n. 11; e576111134020
2525-3409
reponame:Research, Society and Development
instname:Universidade Federal de Itajubá (UNIFEI)
instacron:UNIFEI
instname_str Universidade Federal de Itajubá (UNIFEI)
instacron_str UNIFEI
institution UNIFEI
reponame_str Research, Society and Development
collection Research, Society and Development
repository.name.fl_str_mv Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)
repository.mail.fl_str_mv rsd.articles@gmail.com
_version_ 1797052797655449600