Supervised classification of riparian forest areas of influence in the Goitá and Tapacurá dams through Spring
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Research, Society and Development |
Texto Completo: | https://rsdjournal.org/index.php/rsd/article/view/9947 |
Resumo: | Nowadays, the riparian forests have been degraded by anthropic activities, contributing to silting, contamination and degradation of the environment. Law Nº 12,651 provides for the existence of a minimum area of preservation around water bodies, requiring spatial and temporal monitoring. This monitoring can be done through multiple GIS (Geographic Information Systems) applications available to evaluate the exchange rates in the coverage, including SPRING. In this sense, the objective of the study was to evaluate the performance of the SPRING software in the mapping and supervised classification of the areas under influence of the Goitá and Tapacurá reservoirs, using IKONOS and Google Earth images for the years 2009 and 2019. To carry out the classification, two areas of influence of the riparian forest surrounding the two dams located in the Capibaribe river basin were defined. Six land use and occupation classes were defined. The classification was performed using the maximum likelihood method, comparing the pixels of the image one to one, with a 99% rating threshold. The results determined the existence of 2,2975 km2 of riparian forest in the Goitá dam, presenting greater change in the area of sugar cane with an increase of 4.01%. For the Tapacurá dam, 1,8858 km2 of riparian forest was determined, with a greater change in the area of pastures with an increase of 8.43%. Both areas showed substantial increments in the Mata class (Goitá: 23.41% and Tapacurá: 17.83%). The use of the SPRING software allowed the supervised classification of the riparian forest in these dams, determining six important coverages. |
id |
UNIFEI_85447622033a3bf33b88879d2b2d9043 |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/9947 |
network_acronym_str |
UNIFEI |
network_name_str |
Research, Society and Development |
repository_id_str |
|
spelling |
Supervised classification of riparian forest areas of influence in the Goitá and Tapacurá dams through SpringClasificación supervisada de las áreas de influencia de la mata ciliar en las represas Goitá y Tapacurá mediante SpringClassificação supervisionada das áreas de influência da mata ciliar nas barragens Goitá e Tapacurá mediante SpringBacia hidrográficaDetecção de mudançasImagem de satélitePixelSensoriamento remoto.WatershedChange detectionSatellite imagePixelRemote sensing.Cuenca hidrográficaDetección de câmbiosImagen satelitalPixelSensoriación remota.Nowadays, the riparian forests have been degraded by anthropic activities, contributing to silting, contamination and degradation of the environment. Law Nº 12,651 provides for the existence of a minimum area of preservation around water bodies, requiring spatial and temporal monitoring. This monitoring can be done through multiple GIS (Geographic Information Systems) applications available to evaluate the exchange rates in the coverage, including SPRING. In this sense, the objective of the study was to evaluate the performance of the SPRING software in the mapping and supervised classification of the areas under influence of the Goitá and Tapacurá reservoirs, using IKONOS and Google Earth images for the years 2009 and 2019. To carry out the classification, two areas of influence of the riparian forest surrounding the two dams located in the Capibaribe river basin were defined. Six land use and occupation classes were defined. The classification was performed using the maximum likelihood method, comparing the pixels of the image one to one, with a 99% rating threshold. The results determined the existence of 2,2975 km2 of riparian forest in the Goitá dam, presenting greater change in the area of sugar cane with an increase of 4.01%. For the Tapacurá dam, 1,8858 km2 of riparian forest was determined, with a greater change in the area of pastures with an increase of 8.43%. Both areas showed substantial increments in the Mata class (Goitá: 23.41% and Tapacurá: 17.83%). The use of the SPRING software allowed the supervised classification of the riparian forest in these dams, determining six important coverages.En la actualidad, las selvas ciliares están siendo degradadas por las actividades antrópicas, contribuyendo a la contaminación y degradación del medio ambiente. La ley Nº 12.651 dispone la existencia de un área mínima de preservación entorno a los cuerpos de agua, siendo necesario el monitoreo espacial y temporal. Este monitoreo puede hacerse mediante múltiples aplicaciones SIG (Sistemas de Información Geográfica) disponibles para evaluar los cambios en la cobertura, entre ellos el SPRING. En este sentido, el objetivo del trabajo fue evaluar el desempeño del software SPRING en el mapeo y clasificación supervisada de las áreas bajo influencia de los embalses Goitá y Tapacurá, utilizando imágenes IKONOS y Google Earth para los años 2009 y 2019. Para la realización de la clasificación se definieron dos áreas de influencia de la mata ciliar circundante a las dos represas asignadas en la cuenca del río Capibaribe. Se han definido seis clases de uso y ocupación del suelo. La clasificación se hizo utilizando el método de máxima verosimilitud, comparando los píxeles de la imagen uno a uno, con un umbral de clasificación del 99%. Los resultados determinaron la existencia de 2.2975 km2 de mata ciliar en la presa Goitá, presentando mayor cambio en el área de la caña de azúcar con aumento de 4.01%. Para la represa Tapacurá se determinó 1.8858 km2 de mata ciliar, teniendo mayor cambio en la zona de pastos con aumento de 8.43%. Ambas áreas mostraron incrementos substanciales en la clase Mata (Goitá: 23.41% y Tapacurá: 17.83%). La utilización del software SPRING ha permitido la clasificación supervisada de la mata ciliar en estas presas, determinando seis coberturas de importancia.Na atualidade, as matas ciliares vêm sendo degradadas pelas atividades antrópicas, contribuindo ao assoreamento, contaminação e degradação do meio ambiente. A lei Nº 12.651 dispõe a existência de uma área mínima de preservação entorno aos corpos de água, sendo necessário o monitoramento espacial e temporal. Este monitoramento pode ser feito mediante múltiplas aplicações SIG (Sistemas de Informação Geográfica) disponíveis para avaliar os câmbios na cobertura, dentre eles o SPRING. Neste sentido, o objetivo do trabalho foi avaliar o desempenho do software SPRING no mapeamento e classificação supervisionada das áreas sob influência dos reservatórios Goitá e Tapacurá, utilizando imagens IKONOS e Google Earth para os anos 2009 e 2019. Para a realização da classificação foram definidas duas áreas de influência da mata ciliar circundante às duas barragens alocadas na bacia do rio Capibaribe. Foram definidas seis classes de uso e ocupação do solo. A classificação foi feita utilizando o método de máxima verossimilidade, comparando os pixels da imagem um a um, com um limiar de classificação de 99%. Os resultados determinaram a existência de 2.2975 km2 de mata ciliar na barragem Goitá, apresentando maior mudança na área da cana de açúcar com acréscimo de 4.01%. Para a barragem Tapacurá foi determinada 1.8858 km2 de mata ciliar, tendo maior mudança na área de pastos com acréscimo de 8.43%. Ambas áreas mostraram incrementos substanciais na classe Mata (Goitá: 23.41% e Tapacurá: 17.83%). A utilização do software SPRING permitiu a classificação supervisionada da mata ciliar nestas barragens, determinando seis coberturas de importância.Research, Society and Development2020-11-22info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/994710.33448/rsd-v9i11.9947Research, Society and Development; Vol. 9 No. 11; e4829119947Research, Society and Development; Vol. 9 Núm. 11; e4829119947Research, Society and Development; v. 9 n. 11; e48291199472525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIporhttps://rsdjournal.org/index.php/rsd/article/view/9947/9016Copyright (c) 2020 Valentin Rubén Orcón Zamora; Adiel Felipe da Silva Cruz; Antonio Ricardo Santos de Andrade; Edijailson Gonçalves da Silva; Emylle Kerolayne Palmeira de Andrade; Jéssica Dayana de Souza Silva; Edes Torres da Silvahttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessZamora, Valentin Rubén Orcón Cruz, Adiel Felipe da SilvaAndrade, Antonio Ricardo Santos deSilva, Edijailson Gonçalves da Andrade, Emylle Kerolayne Palmeira deSilva, Jéssica Dayana de Souza Silva, Edes Torres da2020-12-10T23:37:57Zoai:ojs.pkp.sfu.ca:article/9947Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:32:07.316684Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false |
dc.title.none.fl_str_mv |
Supervised classification of riparian forest areas of influence in the Goitá and Tapacurá dams through Spring Clasificación supervisada de las áreas de influencia de la mata ciliar en las represas Goitá y Tapacurá mediante Spring Classificação supervisionada das áreas de influência da mata ciliar nas barragens Goitá e Tapacurá mediante Spring |
title |
Supervised classification of riparian forest areas of influence in the Goitá and Tapacurá dams through Spring |
spellingShingle |
Supervised classification of riparian forest areas of influence in the Goitá and Tapacurá dams through Spring Zamora, Valentin Rubén Orcón Bacia hidrográfica Detecção de mudanças Imagem de satélite Pixel Sensoriamento remoto. Watershed Change detection Satellite image Pixel Remote sensing. Cuenca hidrográfica Detección de câmbios Imagen satelital Pixel Sensoriación remota. |
title_short |
Supervised classification of riparian forest areas of influence in the Goitá and Tapacurá dams through Spring |
title_full |
Supervised classification of riparian forest areas of influence in the Goitá and Tapacurá dams through Spring |
title_fullStr |
Supervised classification of riparian forest areas of influence in the Goitá and Tapacurá dams through Spring |
title_full_unstemmed |
Supervised classification of riparian forest areas of influence in the Goitá and Tapacurá dams through Spring |
title_sort |
Supervised classification of riparian forest areas of influence in the Goitá and Tapacurá dams through Spring |
author |
Zamora, Valentin Rubén Orcón |
author_facet |
Zamora, Valentin Rubén Orcón Cruz, Adiel Felipe da Silva Andrade, Antonio Ricardo Santos de Silva, Edijailson Gonçalves da Andrade, Emylle Kerolayne Palmeira de Silva, Jéssica Dayana de Souza Silva, Edes Torres da |
author_role |
author |
author2 |
Cruz, Adiel Felipe da Silva Andrade, Antonio Ricardo Santos de Silva, Edijailson Gonçalves da Andrade, Emylle Kerolayne Palmeira de Silva, Jéssica Dayana de Souza Silva, Edes Torres da |
author2_role |
author author author author author author |
dc.contributor.author.fl_str_mv |
Zamora, Valentin Rubén Orcón Cruz, Adiel Felipe da Silva Andrade, Antonio Ricardo Santos de Silva, Edijailson Gonçalves da Andrade, Emylle Kerolayne Palmeira de Silva, Jéssica Dayana de Souza Silva, Edes Torres da |
dc.subject.por.fl_str_mv |
Bacia hidrográfica Detecção de mudanças Imagem de satélite Pixel Sensoriamento remoto. Watershed Change detection Satellite image Pixel Remote sensing. Cuenca hidrográfica Detección de câmbios Imagen satelital Pixel Sensoriación remota. |
topic |
Bacia hidrográfica Detecção de mudanças Imagem de satélite Pixel Sensoriamento remoto. Watershed Change detection Satellite image Pixel Remote sensing. Cuenca hidrográfica Detección de câmbios Imagen satelital Pixel Sensoriación remota. |
description |
Nowadays, the riparian forests have been degraded by anthropic activities, contributing to silting, contamination and degradation of the environment. Law Nº 12,651 provides for the existence of a minimum area of preservation around water bodies, requiring spatial and temporal monitoring. This monitoring can be done through multiple GIS (Geographic Information Systems) applications available to evaluate the exchange rates in the coverage, including SPRING. In this sense, the objective of the study was to evaluate the performance of the SPRING software in the mapping and supervised classification of the areas under influence of the Goitá and Tapacurá reservoirs, using IKONOS and Google Earth images for the years 2009 and 2019. To carry out the classification, two areas of influence of the riparian forest surrounding the two dams located in the Capibaribe river basin were defined. Six land use and occupation classes were defined. The classification was performed using the maximum likelihood method, comparing the pixels of the image one to one, with a 99% rating threshold. The results determined the existence of 2,2975 km2 of riparian forest in the Goitá dam, presenting greater change in the area of sugar cane with an increase of 4.01%. For the Tapacurá dam, 1,8858 km2 of riparian forest was determined, with a greater change in the area of pastures with an increase of 8.43%. Both areas showed substantial increments in the Mata class (Goitá: 23.41% and Tapacurá: 17.83%). The use of the SPRING software allowed the supervised classification of the riparian forest in these dams, determining six important coverages. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-11-22 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/9947 10.33448/rsd-v9i11.9947 |
url |
https://rsdjournal.org/index.php/rsd/article/view/9947 |
identifier_str_mv |
10.33448/rsd-v9i11.9947 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/9947/9016 |
dc.rights.driver.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Research, Society and Development |
publisher.none.fl_str_mv |
Research, Society and Development |
dc.source.none.fl_str_mv |
Research, Society and Development; Vol. 9 No. 11; e4829119947 Research, Society and Development; Vol. 9 Núm. 11; e4829119947 Research, Society and Development; v. 9 n. 11; e4829119947 2525-3409 reponame:Research, Society and Development instname:Universidade Federal de Itajubá (UNIFEI) instacron:UNIFEI |
instname_str |
Universidade Federal de Itajubá (UNIFEI) |
instacron_str |
UNIFEI |
institution |
UNIFEI |
reponame_str |
Research, Society and Development |
collection |
Research, Society and Development |
repository.name.fl_str_mv |
Research, Society and Development - Universidade Federal de Itajubá (UNIFEI) |
repository.mail.fl_str_mv |
rsd.articles@gmail.com |
_version_ |
1797052663539433472 |