Environmental modeling and use of artificial intelligence for prognosis of deforestation: the case of Rebio do Gurupi-MA

Detalhes bibliográficos
Autor(a) principal: Gama, Luana Helena Oliveira Monteiro
Data de Publicação: 2021
Outros Autores: Paiva, Paula Fernanda Pinheiro Ribeiro, Silva Junior, Orleno Marques da, Ruivo, Maria de Lourdes Pinheiro
Tipo de documento: Artigo
Idioma: por
Título da fonte: Research, Society and Development
Texto Completo: https://rsdjournal.org/index.php/rsd/article/view/11609
Resumo: Protected areas were created mainly for the conservation of biodiversity in the Amazon. However, there are high rates of deforestation within them, caused by the concession of roads, settlements and occupations. The use of geoprocessing techniques is of paramount importance to detect changes in land use and occupation. This study aims to model future scenarios in the Gurupi-MA Biological Reserve using the DYNAMIC EGO software, using the transition method to simulate deforestation trajectories until 2030, based on the variables: altitude, slope, roads, settlement and hydrographic area. As a result of the transition matrix, four transitions were computed: forest for deforestation, forest for illegal logging, illegal logging for deforestation and illegal logging. The forest-class areas showed the highest number of cells with changes, with a percentage of 0.25% deforestation and 6.08% of cells for illegal exploitation. It was found that several factors contribute to the increase in deforestation close to roads and settlements: illegal logging, cattle raising, hunting and human occupation, compromising the region's fauna and flora. From the simulation of the future scenario (2030), it was observed that the class of deforestation tends to grow north of REBIO. By 2030, there may be a total reduction of 9.17% in forest cover in this UC. Through environmental modeling, together with the command, control and monitoring plans, it is possible to guide socioeconomic and environmental development in protected areas in the Amazon region of Maranhão, for the maintenance and protection of their natural wealth.
id UNIFEI_869b7477e1e3187c658e4b55988e600f
oai_identifier_str oai:ojs.pkp.sfu.ca:article/11609
network_acronym_str UNIFEI
network_name_str Research, Society and Development
repository_id_str
spelling Environmental modeling and use of artificial intelligence for prognosis of deforestation: the case of Rebio do Gurupi-MAModelización ambiental y uso de inteligencia artificial para el pronóstico de la deforestación: el caso de Rebio do Gurupi-MAModelagem ambiental e uso da inteligência artificial para prognóstico de desmatamento: o caso da Rebio do Gurupi-MASpatial analysisDeforestationAmazon.Análisis espacialDeforestaciónAmazonas.Análise espacialDesmatamentoAmazônia.Protected areas were created mainly for the conservation of biodiversity in the Amazon. However, there are high rates of deforestation within them, caused by the concession of roads, settlements and occupations. The use of geoprocessing techniques is of paramount importance to detect changes in land use and occupation. This study aims to model future scenarios in the Gurupi-MA Biological Reserve using the DYNAMIC EGO software, using the transition method to simulate deforestation trajectories until 2030, based on the variables: altitude, slope, roads, settlement and hydrographic area. As a result of the transition matrix, four transitions were computed: forest for deforestation, forest for illegal logging, illegal logging for deforestation and illegal logging. The forest-class areas showed the highest number of cells with changes, with a percentage of 0.25% deforestation and 6.08% of cells for illegal exploitation. It was found that several factors contribute to the increase in deforestation close to roads and settlements: illegal logging, cattle raising, hunting and human occupation, compromising the region's fauna and flora. From the simulation of the future scenario (2030), it was observed that the class of deforestation tends to grow north of REBIO. By 2030, there may be a total reduction of 9.17% in forest cover in this UC. Through environmental modeling, together with the command, control and monitoring plans, it is possible to guide socioeconomic and environmental development in protected areas in the Amazon region of Maranhão, for the maintenance and protection of their natural wealth.Las áreas protegidas fueron creadas principalmente para la conservación de la biodiversidad en la Amazonía. Sin embargo, existen altos índices de deforestación dentro de ellos, provocados por la concesión de caminos, asentamientos y ocupaciones. El uso de técnicas de geoprocesamiento es de suma importancia para detectar cambios en el uso y ocupación del suelo. Este estudio tiene como objetivo modelar escenarios futuros en la Reserva Biológica Gurupi-MA utilizando el software DYNAMICS EGO, utilizando el método de transición para simular trayectorias de deforestación hasta 2030, en base a las variables: altitud, pendiente, caminos, asentamiento y área hidrográfica. Como resultado de la matriz de transición, se calcularon cuatro transiciones: bosque para deforestación, bosque para tala ilegal, tala ilegal para deforestación y tala ilegal. Las áreas de clase forestal presentaron el mayor número de celdas con cambios, con un porcentaje de 0.25% de deforestación y 6.08% de celdas para explotación ilegal. Se encontró que varios factores contribuyen al aumento de la deforestación cerca de caminos y asentamientos: tala ilegal, ganadería, caza y ocupación humana, comprometiendo la fauna y la flora de la región. A partir de la simulación del escenario futuro (2030), se observó que la clase de deforestación tiende a crecer al norte de REBIO. Para el 2030, puede haber una reducción total de 9.17% en la cobertura forestal en esta UC. A través de la modelización ambiental, junto con los planes de comando, control y seguimiento, es posible orientar el desarrollo socioeconómico y ambiental en las áreas protegidas de la región amazónica de Maranhão, para el mantenimiento y protección de sus riquezas naturales.As áreas protegidas foram criadas principalmente para a conservação da biodiversidade na Amazônia. No entanto, existem altas taxas de desmatamento dentro das mesmas, ocasionado pela concessão de estradas, assentamentos e ocupações. O uso de técnicas de geoprocessamento é de suma importância para detectar mudanças no uso e ocupação do solo. Tal estudo objetiva modelar cenários futuros na Reserva Biológica Gurupi-MA no software DINAMICA EGO, usando o método de transição para simular trajetórias de desmatamento até 2030, com base nas variáveis: altitude, declividade, estradas, assentamento e hidrográfica. Como resultado da matriz de transição, quatro transições foram computadas: floresta para desmatamento, floresta para extração ilegal de madeira, extração ilegal de madeira para desmatamento e exploração ilegal de madeira. As áreas da classe florestal apresentaram maior número de células com alteração, com um percentual de 0,25% de desmatamento e 6,08% de células para exploração ilegal. Constatou-se que vários fatores contribuem para o aumento do desmatamento próximo a estradas e assentamentos: extração ilegal de madeira, criação de gado, caça e ocupação humana, comprometendo a fauna e a flora da região. A partir da simulação do cenário futuro (2030), observou-se que a classe de desmatamento tende a crescer ao norte de REBIO. Até 2030, pode haver uma redução total de 9,17% da cobertura florestal nesta UC. Por meio da modelagem ambiental, juntamente com os planos de comando, controle e monitoramento, é possível orientar o desenvolvimento socioeconômico e ambiental em áreas protegidas da Amazônia maranhense, para a manutenção e proteção de sua riqueza natural.Research, Society and Development2021-02-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/1160910.33448/rsd-v10i2.11609Research, Society and Development; Vol. 10 No. 2; e13810211609Research, Society and Development; Vol. 10 Núm. 2; e13810211609Research, Society and Development; v. 10 n. 2; e138102116092525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIporhttps://rsdjournal.org/index.php/rsd/article/view/11609/11066Copyright (c) 2021 Luana Helena Oliveira Monteiro Gama; Paula Fernanda Pinheiro Ribeiro Paiva; Orleno Marques da Silva Junior; Maria de Lourdes Pinheiro Ruivohttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessGama, Luana Helena Oliveira Monteiro Paiva, Paula Fernanda Pinheiro RibeiroSilva Junior, Orleno Marques daRuivo, Maria de Lourdes Pinheiro2021-03-02T09:32:39Zoai:ojs.pkp.sfu.ca:article/11609Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:33:23.321527Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false
dc.title.none.fl_str_mv Environmental modeling and use of artificial intelligence for prognosis of deforestation: the case of Rebio do Gurupi-MA
Modelización ambiental y uso de inteligencia artificial para el pronóstico de la deforestación: el caso de Rebio do Gurupi-MA
Modelagem ambiental e uso da inteligência artificial para prognóstico de desmatamento: o caso da Rebio do Gurupi-MA
title Environmental modeling and use of artificial intelligence for prognosis of deforestation: the case of Rebio do Gurupi-MA
spellingShingle Environmental modeling and use of artificial intelligence for prognosis of deforestation: the case of Rebio do Gurupi-MA
Gama, Luana Helena Oliveira Monteiro
Spatial analysis
Deforestation
Amazon.
Análisis espacial
Deforestación
Amazonas.
Análise espacial
Desmatamento
Amazônia.
title_short Environmental modeling and use of artificial intelligence for prognosis of deforestation: the case of Rebio do Gurupi-MA
title_full Environmental modeling and use of artificial intelligence for prognosis of deforestation: the case of Rebio do Gurupi-MA
title_fullStr Environmental modeling and use of artificial intelligence for prognosis of deforestation: the case of Rebio do Gurupi-MA
title_full_unstemmed Environmental modeling and use of artificial intelligence for prognosis of deforestation: the case of Rebio do Gurupi-MA
title_sort Environmental modeling and use of artificial intelligence for prognosis of deforestation: the case of Rebio do Gurupi-MA
author Gama, Luana Helena Oliveira Monteiro
author_facet Gama, Luana Helena Oliveira Monteiro
Paiva, Paula Fernanda Pinheiro Ribeiro
Silva Junior, Orleno Marques da
Ruivo, Maria de Lourdes Pinheiro
author_role author
author2 Paiva, Paula Fernanda Pinheiro Ribeiro
Silva Junior, Orleno Marques da
Ruivo, Maria de Lourdes Pinheiro
author2_role author
author
author
dc.contributor.author.fl_str_mv Gama, Luana Helena Oliveira Monteiro
Paiva, Paula Fernanda Pinheiro Ribeiro
Silva Junior, Orleno Marques da
Ruivo, Maria de Lourdes Pinheiro
dc.subject.por.fl_str_mv Spatial analysis
Deforestation
Amazon.
Análisis espacial
Deforestación
Amazonas.
Análise espacial
Desmatamento
Amazônia.
topic Spatial analysis
Deforestation
Amazon.
Análisis espacial
Deforestación
Amazonas.
Análise espacial
Desmatamento
Amazônia.
description Protected areas were created mainly for the conservation of biodiversity in the Amazon. However, there are high rates of deforestation within them, caused by the concession of roads, settlements and occupations. The use of geoprocessing techniques is of paramount importance to detect changes in land use and occupation. This study aims to model future scenarios in the Gurupi-MA Biological Reserve using the DYNAMIC EGO software, using the transition method to simulate deforestation trajectories until 2030, based on the variables: altitude, slope, roads, settlement and hydrographic area. As a result of the transition matrix, four transitions were computed: forest for deforestation, forest for illegal logging, illegal logging for deforestation and illegal logging. The forest-class areas showed the highest number of cells with changes, with a percentage of 0.25% deforestation and 6.08% of cells for illegal exploitation. It was found that several factors contribute to the increase in deforestation close to roads and settlements: illegal logging, cattle raising, hunting and human occupation, compromising the region's fauna and flora. From the simulation of the future scenario (2030), it was observed that the class of deforestation tends to grow north of REBIO. By 2030, there may be a total reduction of 9.17% in forest cover in this UC. Through environmental modeling, together with the command, control and monitoring plans, it is possible to guide socioeconomic and environmental development in protected areas in the Amazon region of Maranhão, for the maintenance and protection of their natural wealth.
publishDate 2021
dc.date.none.fl_str_mv 2021-02-07
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/11609
10.33448/rsd-v10i2.11609
url https://rsdjournal.org/index.php/rsd/article/view/11609
identifier_str_mv 10.33448/rsd-v10i2.11609
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/11609/11066
dc.rights.driver.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Research, Society and Development
publisher.none.fl_str_mv Research, Society and Development
dc.source.none.fl_str_mv Research, Society and Development; Vol. 10 No. 2; e13810211609
Research, Society and Development; Vol. 10 Núm. 2; e13810211609
Research, Society and Development; v. 10 n. 2; e13810211609
2525-3409
reponame:Research, Society and Development
instname:Universidade Federal de Itajubá (UNIFEI)
instacron:UNIFEI
instname_str Universidade Federal de Itajubá (UNIFEI)
instacron_str UNIFEI
institution UNIFEI
reponame_str Research, Society and Development
collection Research, Society and Development
repository.name.fl_str_mv Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)
repository.mail.fl_str_mv rsd.articles@gmail.com
_version_ 1797052744699215872